
NumCSE - Complete Ch. 13 1

NumCSE - Complete (Ch. 1-3)
Additional files

Class NumCSE

Date

PPT NumCSE_Lecture_Document.pdf

Topic Lecture Document Ch. 1-3

Type Book

0. Table of Content

@Oct 25, 2020

0. Table of Content
1. Computing with Matrices and Vectors

1.1 Fundamentals
1.1.1 Notations

1.2 Software and Libraries
1.2.1 Eigen
1.2.3 Dense Matrix Storage Formats

1.4 Computational Effort
1.4.1 Asymptotic Computational Complexity
1.4.2 Cost of Basic Linear-Algebra Operations
1.4.3 Improving Complexity in Numerical Linear Algebra

1.5 Machine Arithmetic and Consequences
1.5.2 Machine Numbers
1.5.3 Roundoff Errors
1.5.4 Cancellation

2. Direct Methods for Square Linear Systems of Equations
2.1 Introduction: Linear Systems of Equations (LSE)
2.2 Theory: Linear Systems of Equations (LSE)

2.2.1 LSE: Existence and Uniqueness of Solutions
2.3 Gaussian Elimination (GE)

2.3.1 Basic Algorithm
2.3.2 LU-Decomposition
2.3.3 Pivoting

2.6 Exploiting Structure when Solving Linear Systems
2.7 Sparse Linear Systems

2.7.1 Sparse Matrix Storage Formats
2.7.2 Sparse Matrices in Eigen
2.7.3 Direct Solution of Sparse Linear Systems of Equations

3. Direct Methods for Linear Least Squares Problems
3.1 Least Squares Solution Concepts

NumCSE - Complete Ch. 13 2

1. Computing with Matrices and Vectors

1.1 Fundamentals

1.1.1 Notations
In this lecture we denote column vectors with and row vectors with . For example,
denotes the vector space of column vectors whereas denotes the vector space of row
vectors. We denote sub vectors with .

We denote matrices with . In this lecture, matrices are two-dimensional arrays of real or
complex numbers:

3.1.1 Least Squares Solutions: Definitions
3.1.2 Normal Equations
3.1.3 Moore-Penrose Pseudoinverse

3.2 Normal Equation Methods
3.3 Orthogonal Transformation Methods

3.3.1 Transformation Idea
3.3.2 Orthogonal/Unitary Matrices
3.3.3 QR-Decomposition
3.3.4 QR-Based Solver for Linear Least Squares Problems
3.3.5 Modification Techniques for QR-Decomposition

3.4 Singular Value Decomposition (SVD)
3.4.1 SVD: Definition and Theory
3.4.2 SVD in Eigen
3.4.3 Solving General Least-Squares Problems by SVD
3.4.4 SVD-Based Optimization and Approximation

3.6 Constrained Least Squares
4. Midterm Prep-Questions

4.1 HS 2019
4.1.1 Rank-1 Modifications
4.1.2 Computational cost of numerical linear algebra operations
4.1.3 Cancellation

4.2 HS 2018
4.2.1 Singular Value Decomposition
4.2.2 Asymptotic Complexity
4.2.3 Cancellation
4.2.4 Householder reflections

x xT Kn

K1,n

(x) =k:l [x , ..., x] , 1 ≤k l
T k ≤ l ≤ n

X

A := ∈⎣⎢⎢
⎡a11
⋮

an1

⋯

⋯

a1m

⋮
anm

⎦⎥⎥
⎤

Kn,m

NumCSE - Complete Ch. 13 3

Here, denotes the vector space of -matrices, where is the number of rows and
 is the number of columns. We denote matrix blocks with .

We define the (hermitian) transposed matrix as:

1.2 Software and Libraries

1.2.1 Eigen
Eigen is a header-only C++ template library designed to enable easy, natural and efficient

numerical linear algebra: it provides data structures and a wide range of operations for
matrices and vectors.

A generic matrix data type is given by the templated class:

Eigen::Matrix<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>

Here Scalar is the underlying scalar type of the matrix entries, usually either double, float or
complex<>.

Matrix and vector data types in Eigen

#include <Eigen/Dense>

template <typename Scalar>
void eigenTypeDemo(unsigned int dim) {
 // General dynamic matrices
 using dynMat_t = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
 // Dynamic column vectors
 using dynColVec_t = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
 using index_t = typename dynMat_t::Index;
 using entry_t = typename dynMat_t::Scalar;
 // Declare vectors of size 'dim', not yet initialized
 dynColVec_t colvec(dim);
 // Initialisation through component access
 for(index_t i = 0; i < colvec.size(); ++i) colvec[i] = (Scalar)i;
}

The following convenience data types are provided by Eigen:

MatrixXd is a generic variable size matrix with double precision entries

VectorXd, RowVectorXd is a dynamic column or row vector

MatrixNd with for small fixed size square -matrices

VectorNd with for small column vector with fixed length

Kn,m n×m n

m (A) :k:l,r:s = [a]ij i=k,...l; j=r,...,s

A :H = :⎣⎢⎢
⎡a11
⋮

an1

⋯

⋯

a1m

⋮
anm

⎦⎥⎥
⎤H

= ⎣⎢⎢
⎡a11

⋮
a1m

⋯

⋯

an1

⋮
amn

⎦⎥⎥
⎤

N = 2, 3, 4 N ×N

N = 2, 3, 4 N

NumCSE - Complete Ch. 13 4

The d in the type name may be replaced with i for int , f for float , and cd for
complex<double> to select another basic scalar type. All matrix type feature the methods
cols(), rows() , and size() telling the number of columns, rows, and total number of

entries.

Initialization of dense matrices in Eigen

#include <Eigen/Dense>
// Just allocate space for matrix, no initialisation
Eigen::MatrixXd A(rows, cols);
// Zero matrix
Eigen::MatrixXd O = MatrixXd::Zero(rows, cols);
// Ones matrix
Eigen::MatrixXd B = MatrixXd::Ones(rows, cols);
// Matrix with all entries same as value
Eigen::MatrixXd C = MatrixXd::Constant(rows, cols, value);
// Random matrix, entries uniformly distributed in [0,1]
Eigen::MatrixXd E = MatrixXd::Random(rows, cols);
// Identity matrix
Eigen::MatrixXd I = MatrixXd::Identity(rows, cols);
std::cout << "size of A = (" << A.rows() << ',' << A.cols() ')' << std:endl;

Access to sub-matrices in Eigen

The method block(int i, int j, int p, int q) returns a reference to the sub-matrix with
upper left corner at position and size . The methods row(int i) and col(int j)
provide a reference to the corresponding row and column of the matrix.

Remark

If you want a C++ code built using the Eigen library to run fast, for instance, for large
computations or runtime measurements, you should compile in release mode, that is, with
the compiler switches -O2 -DNDEBUG (for gcc or clang).

1.2.3 Dense Matrix Storage Formats
All numerical libraries store the entries of a (generic = dense) matrix in a linear
array of length . Accessing entries entails suitable index computations.

1.4 Computational Effort
Large scale numerical computations require immense resources and execution time of
numerical codes often becomes a central concern. Therefore, much emphasis has to be putt
on

(i, j) p × q

A ∈ Km,n

mn

A = ⎣⎢
⎡1
4
7

2
5
8

3
6
9⎦⎥
⎤

Row major: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Column major: [1, 4, 7, 2, 5, 8, 3, 6, 9]

NumCSE - Complete Ch. 13 5

1. designing algorithms that produce a desired result with nearly minimal computational
effort

2. exploit possibilities for parallel and vectorised execution

3. organising algorithms in order to make them fit memory hierarchies

4. implementing codes that make optimal use of hardware resources and capabilities

Definition: The computational effort required by a numerical code amounts to the number of
elementary operations (additions, subtractions, multiplications, divisions, square roots)
executed in a run.

1.4.1 Asymptotic Computational Complexity

Definition: The asymptotic (computational) complexity of an algorithm characterises the
worst-case dependence of it's computational effort on one or more problem size parameters
when these tend to .

1.4.2 Cost of Basic Linear-Algebra Operations
Performing elementary BLAS-type operations through simple (nested) loops, we arrive at the
following complexity bounds:

Computational Cost of Basic Numerical Linear Algebra Operations

Operation Description #mul/div #add/sub
asymptotic

complexity

dot product n n-1 O(n)

tensor
product

nm 0 O(mn)

matrix *
vector

mn (n-1)m O(mn)

matrix
product

mnk mk(n-1) O(mnk)

1.4.3 Improving Complexity in Numerical Linear Algebra
Efficient associative matrix multiplication

Given we may compute the vector in two ways:

1. , T = (a*b.transpose())*x; → complexity

2. t = a*b.dot(x) → complexity

Definition: The Kronecker product of two matrices and is the
-matrix

∞

(x ∈ R , y ∈n R) →n x yH

(x ∈ R , y ∈m R) →n xyH

(x ∈ R ,A ∈n R) →m,n Ax

(A ∈ R ,B ∈m,n R) →n,k

AB

a ∈ K , b ∈m K , x ∈n Kn y = ab xT

y = (ab)xT O(mn)

y = a(b x),T O(m+ n)

A⊗B A ∈ Km,n B ∈ Kl,k

(ml) × (nk)

https://www.notion.so/dot-product-c4bf03fc3922434bbb64ea392623a049
https://www.notion.so/tensor-product-c7a350834fc940908a4eeaa9592bdf1a
https://www.notion.so/matrix-vector-56026c5d2c024b1ba6f839764fd9ab83
https://www.notion.so/matrix-product-f577f40154064f05b42b69af4f0b998c

NumCSE - Complete Ch. 13 6

Efficient multiplication of Kronecker product with vector in Eigen

template <class Matrix, class Vector>
void kronmultv(const Matrix &A, const Matrix &B, const Vector &x, Vector &y) {
 unsigned int m = a.rows(); unsigned int n = A.cols();
 unsigned int l = B.rows(); unsigned int k = B.cols();
 Matrix t = B * Matrix::Map(x.data(), k, n) * A.transpose();
 y = Matrix::Map(t.data(), m*l, 1);
}

1.5 Machine Arithmetic and Consequences

1.5.2 Machine Numbers
The reason, why computers must fail to execute exact computations with real numbers is
clear: computers are finite automatons, which therefore can only handle finitely many
number, not . This is an essential property: , the set of machine numbers, is a finite,
discrete subset of .

The set of machine numbers cannot be close under elementary
arithmetic operations that is, when adding, multiplying,
etc., two machine numbers the result may not belong to . The results
of elementary operations with operands in have to be mapped back
to , an operation called rounding. This leads to the fact, that
roundoff errors are inevitable.

1.5.3 Roundoff Errors

Definition: Let be an approximation of . Then the absolute error is given by

and its relative error is defined as

A⊗B := ∈

⎣⎢
⎢⎢⎢
⎡ (A) B11
(A) B21

⋮
(A) Bm1

(A) B12
(A) B22

⋮
(A) Bm2

⋯
⋯

⋯

(A) B1n

(A) B2n

⋮
(A) Bmn

⎦⎥
⎥⎥⎥
⎤

Kml, nk

R M
R

M
+, −, ⋅, /,

M
M

M

∈x~ K x ∈ K

ϵ :abs = ∣x− ∣,x~

ϵ :rel = .
∣x∣

∣x− ∣x~

NumCSE - Complete Ch. 13 7

The number of correct digits of an approximation of is defined through the relative
error: If , then has correct digits, .

Definition: Correct rounding is given by the function

1.5.4 Cancellation
We define the term cancellation as the subtraction of almost equal numbers (with both having
some relative error), which leads to an extreme amplification of the relative errors.

Example: Assume two numbers and , both with a relative error of , i.e. and
. The subtraction of both number should yield , but due to the relative errors it yields
, almost three times as big as expected.

2. Direct Methods for Square Linear Systems of
Equations

2.1 Introduction: Linear Systems of Equations (LSE)
The problem: solving a linear system

We are given the following input and are looking for the output as shown below:

Input/data: square matrix , vector

Output/result: solution vector , such that

We call the system matrix or coefficient matrix and the right hand side vector.

2.2 Theory: Linear Systems of Equations (LSE)

2.2.1 LSE: Existence and Uniqueness of Solutions

Definition: We say that is invertibel/regular iff. .
 is called the inverse of and is noted as .

Definition: Given , the range/image (space) of is the subspace of spanned
by the columns of

The kernel/nullspace of A is

x~ x ∈ K
ϵ ≤rel 10−l x~ l l ∈ N0

rd: R → M, x→max argmin ∣x−∈Mx~ ∣x~

2.0 1.9 5% 2.1
1.81 0.1
0.29

A ∈ Kn,n b ∈ Kn

x ∈ Kn Ax = b

A b

A ∈ Kn,n ∃B ∈ K :n,n AB = BA = I

B A B = A−1

A ∈ Km,n A Km

A

R(A) := {Ax, x ∈ K } ⊂n R .m

N (A) := {z ∈ R :n Az = 0}.

NumCSE - Complete Ch. 13 8

Definition: The rank of a matrix , denoted by , is the maximal number
of linearly independent rows/columns of . Equivalently, .

Theorem: A square matrix is invertible/regular if one of
the following equivalent conditions is satisfied:
1.
2. the columns or rows of are linearly independent
3.
4.

2.3 Gaussian Elimination (GE)

2.3.1 Basic Algorithm
The idea of Gaussian elimination is the transformation of a linear system of equations into a
"simpler", but equivalent LSE by means of successive row transformations. We define row
transformations as a left multiplication with a transformation matrix.

Obviously, left multiplication with a regular matrix does not affect the solution of an LSE,
formally: for any regular

Gaussian elimination: algorithm

void gausseliminationsolve(const MatrixXd &A, const VectorXd& b, VectorXd& x) {
 int n = A.rows();
 MatrixXd Ab(n, n++);
 Ab << A, b;
 // Forward elimination
 for(int i = 0; i < n-1; ++i) {
 double pivot = Ab(i, i);
 for(int l = i+1; k < n; ++k) {
 double fac = Ab(k, i) / pivot;
 Ab.block(k, i+1, 1, n-i) -= fac * Ab.block(i, i+1, 1, n-1);
 }
 }
 // Back substitution
 Ab(n-1, n) = Ab(n-1, n) / Ab(n-1, n-1);
 for(int i = n-2; i >= 0; --i) {
 for(int l = i+1; l < n; ++l) {Ab(i, n) -= Ab(l, n) * Ab(i, l);}
 Ab(i, n) /= Ab(i, i);
 }
 x = Ab.rightCols(1); // Solution in the right most column!
}

The computational cost of Gaussian elimination is given by

M ∈ Km,n rank(M)
M rank(M) = dimR(A)

A ∈ Kn,n

∃B ∈ K :n,n BA = AB = I

A

det(A) = 0
rank(A) = n

T ∈ Kn,n

Ax = b⇒ A x =′ b , if A =′ ′ TA, b =′ Tb.

NumCSE - Complete Ch. 13 9

forward elimination: Ops.

backward elimination: Ops.

which yields a total asymptotic complexity for GE without pivoting for a generic LSE:
.

2.3.2 LU-Decomposition
A matrix factorization expresses a general matrix as the product of two special matrices.
Requirements for these special matrices define the matrix factorization.

We can perform LU-Decomposition by performing the known Gaussian elimination
algorithm, but keeping track of the negative multipliers and let them take the places of matrix
entries mate to vanish:

After performing the above Gaussian elimination, we get the following decomposition

Definition: Given a square matrix , an upper triangular matrix and a
normalized lower triangular matrix form an LU-decomposition of , if .

LU-factorization

std::pair<MatrixXd, MatrixXd> lufac(const MatrixXd &A) {
 int n = A.rows();
 assert(n == A.cols());
 MatrixXd L{MatrixXd::Identity(n, n)};
 MatrixXd U{MatrixXd::Zero(n, n)};
 for(int k = 0; k < n; ++k) {
 for(int j = k; j < n; ++j) {
 U(k, j) = A(k, j) - (L.block(k, 0, 1, k) * U.block(0, j, k, 1))(0, 0);
 }
 for(int i = k + 1; i < n; ++i) {
 L(i, k) = (A(i, k) - (L.block(i, 0, 1, k) * U.block(0, k, k, 1))(0, 0)) / U(k, k);
 }
 }
 return { L, U };
}

n(n− 1)(n+3
2)6

7

n2

n +3
2 3 O(n) =2 O(n)3

A

⇒⎣⎢
⎡1

1
1⎦⎥
⎤
⎣⎢
⎡1
2
3

1
1
−1

0
−1
−1⎦⎥
⎤
⎣⎢
⎡ 4
1
−3⎦⎥
⎤

⇒⎣⎢
⎡1
2 1

1⎦⎥
⎤
⎣⎢
⎡1
0
3

1
−1
−1

0
−1
−1⎦⎥
⎤
⎣⎢
⎡ 4
−7
−3⎦⎥
⎤

⇒⎣⎢
⎡1
2
3
1
1⎦⎥
⎤
⎣⎢
⎡1
0
0

1
−1
−4

0
−1
−1⎦⎥
⎤
⎣⎢
⎡ 4
−7
−15⎦⎥

⎤
⎣⎢
⎡1
2
3
1
4 1⎦⎥

⎤
⎣⎢
⎡1
0
0

1
−1
0

0
−1
3 ⎦⎥
⎤
⎣⎢
⎡ 4
−7
13⎦⎥
⎤

A = LU ⇒ =⎣⎢
⎡1
2
3

1
1
−1

0
−1
−1⎦⎥
⎤

⎣⎢
⎡1
2
3

0
1
4

0
0
1⎦⎥
⎤
⎣⎢
⎡1
0
0

1
−1
0

0
−1
3 ⎦⎥
⎤

A ∈ Kn,n U ∈ Kn,n

L A A = LU

NumCSE - Complete Ch. 13 10

The asymptotic complexity for LU-factorization of is given by
 if .

2.3.3 Pivoting
When doing pivoting in numerical methods we usually choose the relatively larges pivot,
defined as

for , also called partial pivoting.

Lemma: For any regular there is a permutation matrix
, a normalized lower triangular matrix , and a regular

upper triangular matrix , such that .

Performing explicit LU-factorization in Eigen

const Eigen::MatrixXd::Index n = A.cols();
assert(n == A.rows());
Eigen::PartialPivLU<MatrixXd> lu(A);
MatrixXd L = MatrixXd::Identity(n, n);
L.triangularView<StrictlyLower>() += lu.matrixLu();
MatrixXd U = lu.matrixLU().triangularView<Upper>();
MatrixXd P = lu.permutationP();

2.6 Exploiting Structure when Solving Linear Systems
By structure of a linear system we mean prior knowledge that

either certain entries of the systems vanish,

or the system matrix is generated by a particular formula.

Triangular linear systems

Triangular linear systems are linear systems of equations whose system matrix is a triangular
matrix. They can be solved by backward/forward elimination with asymptotic
computational effort compared to an asymptotic complexity of for a generic dense
matrix.

Linear Systems with arrow matrices

From , a diagonal matrix and , we can build an
 arrow matrix

A ∈ Rn,n n +3
2 3

O(n) =2 O(n)3 n→∞

j ∈ {k, ...,n} such that →
max{∣a ∣, l = k, ...,n}jl

∣a ∣ij max

k = j, k ∈ {i, ...,n}

A ∈ Kn,n P ∈
n,n L ∈ Kn,n

U ∈ Kn,n PA = LU

O(n)2

O(n)3

n ∈ N D ∈ K , c ∈n,n K , b ∈n K ,n α ∈ K
(n+ 1) × (n+ 1)

NumCSE - Complete Ch. 13 11

In this case we have, for a LSE of the form , that

Solving an arrow system in Eigen

VectorXd arrowsys_fast(const VectorXd &d, const VectorXd &c, const VectorXd &b,
 const double alpha, const VectorXd &y) {
 int n = d.size();
 VectorXd z = c.array() / d.array();
 VectorXd w = y.head(n).array() / d.array();
 const double den = alpha - b.dot(z);
 if(std::abs(den) < std::numeric_limits<double>::epsilon() * (b.norm() + std::abs(alpha))) {
 throw std::runtime_error("Nearly singular system");
 }
 constt double xi = (y(n) - b.dot(w)) / den;
 return (VectorXd(n+1) << w - xi * z, xi).finished();
}

This code snippet yields an asymptotic complexity for solving arrow systems of for
.

Solving LSE subject to low-rank modification of system matrix

Given a regular matrix , let us assume that at some point in a code we are in a
position to solve any linear system "fast" because

either has a favorable structure, eg. triangular,

or an LU-decomposition of is already available

Now, a is obtained by changing a single entry of :

We may also consider a matrix modification affecting a single row: Changing a single row:
given

A = ⇒

⎣⎢
⎢⎢⎡ D

b

c

α ⎦⎥
⎥⎥⎤

⎣⎢
⎢⎢⎡⋱
⋯

⋱
⋯

⋮

⋮
⋅⎦⎥
⎥⎥⎤

Ax = b

Ax = =[D
bT

c

α
] [x1

ζ
] y := [y1

η
]

⇒ ζ = , x =
α− b D cT −1

η− b D yT −1
1

1 D (y −−1
1 ζc).

O(n)
n→∞

A ∈ Kn,n

Ax = b

A

A

A
~

A

A, ∈A
~ K :n,n if (i, j) =a~ij  (i , j), z +

∗ ∗ a otherwise, i , j ∈ij
∗ ∗ {1, ...,n}

⇒ =A
~

A+ z ⋅ e e .i∗ j∗
T

z ∈ Kn

A, ∈A
~ K :n,n =a~ij a if i =ij  i , (z) +∗

j a otherwise, i , j ∈ij
∗ ∗ {1, ...,n}

⇒ =A
~

A+ e zi∗
T

NumCSE - Complete Ch. 13 12

Both of the above mentioned modifications represent so-called rank-1-modifications of .
A generic rank-1-modification reads

We consider the block partitioned linear system

The Schur complement system after elimination of reads . We
do block elimination again, now getting rid of first, which yields the other Schur
complement system

2.7 Sparse Linear Systems
We start with a rather fuzzy classification of matrices according to their number os zero:

Notion: is said to be sparse, if

The matrix is said to be dense otherwise.

2.7.1 Sparse Matrix Storage Formats
Sparse matrix storage formats for storing a sparse matrix are designed to achieve
two objectives:

1. Amount of memory required is only slightly more than scalars.

2. Computational effort for matrix vector multiplication is proportional to .

Triplet/coordinate list (COO) format

This format stores triplets :

struct Triplet {
 size_t i; // row index
 size_t j; // column index
 scalar_t a; // additive contribution to matrix entry
};
using TripletMatrix = sttd::vector<Triplet>;

A

A ∈ K →n,n :A
~
= A+ uv , u, v ∈H K .n

=[A

vH

u

−1
] [x~

ζ
] .[b

0
]

ζ (A+ uv) =H x~ b⇔ =A
~
x~ b

x~

(1 + v A u)ζ =H −1 v A bH −1

⇒ A =x~ b− b.
1 + v A uH −1

uv AH −1

A ∈ K , m,n ∈n,n N

nnz(A) := #{(i, j) ∈ {1, ...,m} × {1, ...,n} : a =ij  0} << mn.

A ∈ Km,n

nnz(A)

× nnz(A)

(i, j, α), 1 ≤ i ≤ m, 1 ≤ j ≤ n

NumCSE - Complete Ch. 13 13

The vector of triplets in a TripletMatrix has size We write because repetitions
of index pairs are allowed. The matrix entry is defined to be the sum of all values

 associated with the index pair .

Compressed row-storage (CRS) format

The CRS format for a sparse matrix keeps the data in three contiguous arrays:

std::vector<scalar_t> val → size

std::vector<size_t> col_ind → size

std:vector<size_t> row_ptr → size and row_ptr[n+1] =

2.7.2 Sparse Matrices in Eigen
Eigen can handle sparse matrices in the standard Compressed Row Storage (CRS) and
Compressed Column Storage (CCS) format:

#include <Eigen/Sparse>
Eigen::SparseMatrix<int, Eigen::ColMajor> Asp(rows, cols); // CCS format
Eigen::SparseMatrix<double, Eigen::RowMajor> Bsp(rows, cols); // CRS format

Matrices should first be assembled in triplet format, from which as sparse matrix is built.
Eigen offers special data types and facilities for handling triplets:

std::vector<Eigen::Triplet<double>> triplets;
//.. fill the std::vector triplets
Eigen::SparseMatrix<double, Eigen::RowMajor> spMat(rows, cols);
spMat.setFromTriplets(triplets.begin(), triplets.end());

Furthermore, a triplet object can be initialized as demonstrated in the following example:

≥ nnz(A). ≥
(i, j) (A)ij

αij (i, j)

A ∈ Kn,n

nnz(A)

nnz(A)

n+ 1 nnz(A) + 1

NumCSE - Complete Ch. 13 14

unsigned int row_idx = 2;
unsigned int col_idx = 4;
double value = 2.5;
Eigen::Triplet<double> triplet(row_idx, col_idx, value);
std::cout <<'(' triplet.row() << ',' << triplet.col()
 <<',' triplet.value() << ')' << std::endl;

2.7.3 Direct Solution of Sparse Linear Systems of Equations
The standard sparse solver in Eigen is SparseLU :

using SparseMatrix = Eigen::SparseMatrix<double>;
void sparse_solve(const SparseMatrix &A, const VectorXd &b, VectorXd &x) {
 Eigen::SparseLU<SparseMatrix> solver(A);
 if(solver.info() != Eigen::Success) {
 throw "Matrix factorization failed!";
 }
 x = solver.solve(b);
}

When solving linear systems of equations directly, dedicated sparse
elimination solver from numerical libraries have to be used! System
matrices are passed to these algorithms in sparse storage formats to
convey information about zero entries.
Never ever even think about implementing a general sparse elimination
solver by yourself!

3. Direct Methods for Linear Least Squares
Problems
In this chapter we study numerical methods for overdetermined (OD) linear systems of
equations, that is, a linear system with a "tall" rectangular system matrix:

Note that the quotation marks indicate that this is not a well-defined problem in the sense
of that does not define a mapping because

such a vector may not exist,

"Ax = b" : x ∈ R , b ∈n R , A ∈m R , m ≥m,n n

=

⎣⎢
⎢⎢⎢⎢
⎡
A

⎦⎥
⎥⎥⎥⎥
⎤
⎣⎢
⎡
x⎦⎥
⎤

⎣⎢
⎢⎢⎢⎢
⎡
b

⎦⎥
⎥⎥⎥⎥
⎤

Ax = b (Ax) → b

x ∈ Rn

NumCSE - Complete Ch. 13 15

and, even if it exists, it may not be unique.

3.1 Least Squares Solution Concepts
Throughout this chapter we consider the possibly overdetermined linear system of equations

Recall from linear algebra that has a solution, if and only if the right hand side
vector lies in the image of the matrix :

Following the notation for important subspaces associated with a matrix :

image/range: ,

kernel/nullspace: .

3.1.1 Least Squares Solutions: Definitions

Definition: For a given the vector is a least squares solution
of the linear system of , if

In other words, a least squares solution is any vector that minimizes the Euclidean norm
of the residual .

We write for the set of least squares solutions of the linear system of equations

Example: Linear regression

Given: measured data points

Known: without measurement errors, data would satisfy affine linear relationship
, for some parameters .

Solving the overdetermined linear system
of equations in least squares sense we
obtain a least squares estimate for the
parameters and

x ∈ R :n "Ax = b", b ∈ R , A ∈m R , m ≥m,n n.

Ax = b

b A

∃x ∈ R :n Ax = b⇔ b ∈ R(A).

A ∈ Km,n

R(A) := {Ax, x ∈ K } ⊂n Km

N (A) := {x ∈ K :n Ax = 0}

A ∈ R , b ∈m,n Rm x ∈ Rn

Ax = b

x ∈ argmin ∣∣Ay−y∈Rn b∣∣ ,2
2

∣∣Ax− b∣∣ =2
2 min ∣∣Ay−y∈Rn b∣∣ =2

2 min ((A) y −y ,...,y ∈R1 n

i=1

∑
m

j=1

∑
n

ij j (b))i 2

x

r = b−Ax

lsq(A, b)
Ax = b, A ∈ R , b ∈m,n R :m

lsq(A, b) := {x ∈ R :n x is a least squares solution of Ax = b} ⊂ R .n

(x , y), x ∈i i i R, i = 1, ...,m, m ≥ n+ 1

y =
a x+T β a ∈ R , β ∈n R

a β

NumCSE - Complete Ch. 13 16

In statistics, solving this equation is known
as a linear regressions.

Theorem: For any a least squares solution of exists.

3.1.2 Normal Equations

Theorem: The vector is a least squares solution of the linear system of equations
 if and only if it solves the normal equations (NEQ)

Theorem: For holds

Lemma: For any matrix holds

We define the orthogonal complement of a subspace :

Corollary: If and , then the linear system of equations
 has a unique least squares solution

that can be obtained by solving the normal equations.

The assumption that is also called a full-rank condition (FRC), because
.

(a,β) = argmin ∣y −a∈R , β∈Rn

i=1

∑
m

i a x −T
i β∣ .2

A ∈ R , b ∈m,n Rm Ax = b

x ∈ Rn

Ax = b, A ∈ R , b ∈m,n R ,m

A Ax =T A b.T

A ∈ R , m ≥m,n n,

N (A A) =T N (A),
R(A A) =T R(A).

A ∈ Km,n

N (A) = R(A)H ⊥

N (A) =⊥ R(A).H

V ⊂ Kk

V :⊥ = {x ∈ K :k x y =H 0 ∀y ∈ V }.

m ≥ n N (A) = {0} Ax = b, A ∈
R , b ∈m,n R ,m

x = (A A) A b,T −1 T

N (A) = 0
N (A) = 0 ⇔ rank(A) = n

NumCSE - Complete Ch. 13 17

3.1.3 Moore-Penrose Pseudoinverse

Definition: The generalized solution of a linear system of equations
 is defined as

In other words, the generalized solution is the least squares solution with minimal norm.

Theorem: Given the generalized solution of the linear system of
equations is given by

where is any matrix whose columns form a basis of .

The matrix is called the Moore-Penrose
pseudoinverse of . Note, that the Moore-Penrose pseudoinverse does not depend on the
choice of .

3.2 Normal Equation Methods
We can give a simple algorithm for the normal equation method for solving full-rank least
squares problems :

1. Compute regular matrix .

2. Compute right hand side vector .

3. Solve symmetric positive definite (s.p.d.) linear system of equations .

Definition: is symmetric (Hermitian) positive definite (s.p.d.), if

If for all , we say that is positive semi-definite.

Solving a linear least squares problem via normal equations

VectorXd normeqsolve(const MatrixXd &A, const VectorXd &b) {
 if(b.size() != A.rows()) throw runtime_error("Dimension mismatch!");
 VectorXd x = (A.transpose() * A).llt().solve(A.transpose() * b);
 return x;
}

The asymptotic complexity of the normal equation method is given by for
.

x ∈† Rn Ax =
b, A ∈ R , b ∈m,n R ,m

x :† = argmin{∣∣x∣∣ :2 x ∈ lsq(A, b)}.

A ∈ R , b ∈m,n R ,m x†

Ax = b

x =† V (V A AV) (V A b),T T −1 T T

V N (A)⊥

A :† = V (V A AV) V A ∈T T −1 T T Rn,m

A

V

Ax = b

C := A A ∈T Rn,n

c := A bT

Cx = c

M ∈ Kn,n

M =M and ∀x ∈H K :n x Mx >H 0 ⇔ x = 0.

x Mx ≥H 0 x ∈ Kn M

O(n m+2 n)3

m,n→∞

NumCSE - Complete Ch. 13 18

3.3 Orthogonal Transformation Methods

3.3.1 Transformation Idea
In this chapter we consider the full-rank linear least squares problem
given and we try to find . We furthermore know that
and has full rank: .

Furthermore it is to note, that we call two overdetermined linear systems and
 equivalent, if both have the same set of least squares solutions:
.

The idea is that if we have a transformation matrix satisfying
, then

where and .

3.3.2 Orthogonal/Unitary Matrices

Definition: Unitary and orthogonal matrices

 is unitary, if

 is orthogonal, if

Theorem: A matrix is unitary/orthogonal, if and only if the associated linear mapping
preserves the 2-norm:

From the above theorem we can directly state the following conclusions. If a matrix
 is unitary/orthogonal, then

all rows/columns have Euclidean norm

all rows/columns are pairwise orthogonal (w.r.t Euclidean inner product)

, and all eigenvalues

 for any matrix

3.3.3 QR-Decomposition
3.3.3.1 QR-Decomposition: Theory

We first recall the Gram-Schmidt orthogonalization algorithm as follows:

Input:

A ∈ Rm,n, b ∈ Rm

x = argmin ∣∣Ay−y∈Rn b∣∣2 m ≥ n

A rank(A) = n

Ax = b

x =A
~

b
~ lsq(A, b) =

lsq(,)A
~

b
~

T ∈ Rm,m ∣∣Ty∣∣ =2
∣∣y∣∣ ∀y ∈2 Rm

argmin ∣∣Ay−y∈Rn b∣∣ =2 argmin ∣∣ y−y∈Rn A
~ ∣∣ ,b

~
2

=A
~

TA =b
~

Tb

Q ∈ K , n ∈n,n N, Q =−1 QH

Q ∈ K , n ∈n,n N, Q =−1 QT

Q ∈ K unitary ⟺n,n ∣∣Qx∣∣ =2 ∣∣x∣∣ ∀x ∈2 K .n

Q ∈
Kn,n

= 1

∣detQ∣ = 1, ∣∣Q∣∣ =2 1 ∈ {z ∈ C : ∣z∣ = 1}
∣∣QA∣∣ =2 ∣∣A∣∣2 A ∈ Kn,m

{a , ...,a } ⊂1 n Km

NumCSE - Complete Ch. 13 19

Output:

The algorithm is given by:

for do {

;

for do{

; }

if then STOP

else{ }}

Theorem: If is linearly independent, then the Gram-Schmidt algorithm
computes orthogonal vectors satisfying

 for all .

Theorem: For any matrix with there exists

1. a unique matrix that satisfies , and a unique upper triangular
Matrix with , such that

2. a unitary Matrix and a unique upper triangular matrix with
, such that

If , all matrices will be real and is then orthogonal.

3.3.3.2 Computation of QR-Decomposition

Corollary: The product of two orthogonal/unitary matrices of the same size is again
orthogonal/unitary.

The following so called Householder matrices (HHM) effect the reflection of a vector into a
multiple of the first unit vector with the same length:

{q , ...q }1 n

q :1 = ∣∣a ∣∣1 2

a1

j = 2, ...,n

q :j = aj

l = 1, 2, ..., j − 1

q ←j q − <j a , q >j l ql

(q =j 0)

q ←j
∣∣q ∣∣j 2

qj

{a , ...,a } ⊂1 n Rm

q , ...q ∈1 n Rm

Span{q , ..., q } =1 l Span{a , ...,a },1 l

l ∈ {1, ...,n}

A ∈ Kn,k rank(A) = k

Q ∈0 Rn,k Q Q =0
H

0 Ik
R ∈0 Kk,k (R) >ii 0, i ∈ {1, ...,k}

A = Q ⋅0 R ("economical" QR-decomposition)0

Q ∈ Kn,n R ∈ n,k (R) >ii

0, i ∈ {1, ...,n}

A = Q ⋅R (full QR-decomposition)

K = R Q

Q = H(v) := I − 2 with v =
v vT

vvT

a± ∣∣a∣∣ e2 1

NumCSE - Complete Ch. 13 20

where is the first Cartesian basis vector.

Suitable successive Householder transformations determined by the left most column of
shrinking bottom right matrix blocks can be used to achieve upper triangular form . Writing

 for the Householder matrix used in the -th factorization yields for the QR-
decomposition of

The following orthogonal transformation, a Givens rotation, annihilates the -th
component of a vector . Here stands for and for ,
the angle of rotation:

The QR-decomposition by successive Householder transformations has asymptotic
complexity for .

Definition: For we call

Furthermore we define as the bandwidth of .

Theorem: If is the QR-decomposition of a regular matrix, then , then
.

3.3.3.3 QR-Decomposition: Stability

It is important to note, that unitary/orthogonal transformations do not involve any
amplification of relative errors in data vectors.

Theorem: Let be the R-factor of the QR-decomposition of computed
by means of successive Householder reflections. Then there exists an orthogonal
such that

e1

R

Ql l

A ∈ C , A =n,n QR :

Q ⋅n−1 Q ⋯Q A =n−2 1 R and Q := Q ⋯Q .1
T

n−1
T

k

a = [a , ...,a] ∈1 n
T Rn γ cosϕ σ sinϕ ϕ

G (a ,a)a :1k 1 k = ⋅

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡ γ

⋮
−σ

⋮
0

⋯

⋱
⋯

⋯

σ

⋮
γ

⋮
0

⋯

⋯

⋱
⋯

0

⋮
0

⋮
1⎦⎥
⎥⎥⎥
⎥⎥⎥
⎤

=

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡a1
⋮
ak

⋮
an
⎦⎥
⎥⎥⎥
⎥⎥⎥
⎤

,

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡a1
⋮
0

⋮
an
⎦⎥
⎥⎥⎥
⎥⎥⎥
⎤

γ = , σ =
∣a ∣ + ∣a ∣1

2
k
2

a1

∣a ∣ + ∣a ∣1
2

k
2

ak

O(mn)2 m,n→∞

A = (a) ∈ij i,j Km,n

(A) :bw = min{k ∈ N : j − i > k ⇒ a =ij 0} the upper bandwidth,
(A) :bw = min{k ∈ N : i − j > k ⇒ a =ij 0}the lower bandwidth.

bw(A) := (A) +bw (A) +bw 1 A

A = QR A ∈ Rn,n

bw(R) ≤ bw(A)

∈R
~ Rm,n A ∈ Rm,n

Q ∈ Rm,m

A+ΔA = Q with ∣∣ΔA∣∣ ≤R
~

2 ∣∣A∣∣ ,
1 − cmn EPS

cmn EPS
2

NumCSE - Complete Ch. 13 21

where is the machine precision and a small constant independent of .

3.3.3.4 QR-Decomposition in Eigen

#include <Eigen/QR>

std::pair<MatrixXd, MatrixXd> qr_decomp_eco(const MatrixXd& A) {
 Eigen::HouseholderQR<MatrixXd> qr(A);
 MatrixXd Q = qr.householderQ();
 MatrixXd R = qr.matrixQR().template triangularView<Eigen::Upper>();
 return std::pair<MatrixXd, MatrixXd>(Q, R);
}

3.3.4 QR-Based Solver for Linear Least Squares Problems
We consider the full-rank linear least squares problem: Given

, seek such that . We assume that we are given
a QR-decomposition: orthogonal, regular upper triangular
matrix.

We then apply the orthogonal 2-norm preserving transformation encoded in to :

Eigen's built-in QR-based linear least squares solver

double lsqsolve_eigen(const MatrixXd& A, const VectorXd& b, VectorXd& x) {
 x = A.householderQr().solve(b);
 return ((A*x - b).norm());
}

Remark:

Computing generalized QR-decomposition by means of Householder
reflections or Givens rotations is numerically stable for any .

For any regular system matrix an LSE can be solved by means of "QR-decomposition +
orthogonal transformation + backward substitution" in a stable manner.

Normal equations vs. orthogonal transformations methods

Use orthogonal transformation methods for least squares problems, whenever
is dense and is small.

Use normal equations in the expanded form, when is sparse and are big.

3.3.5 Modification Techniques for QR-Decomposition
3.5.5.1 Rank-1 Modifications

EPS c > 0 A

A ∈ R , m ≥m,n

n, rank(A) = n x ∈ Rn ∣∣Ax− b∣∣ →2 min
A = QR, Q ∈ Rm,m R ∈ Rm,n

Q Ax− b

∣∣AX − b∣∣ =2 ∣∣QRx− b∣∣ =2 ∣∣Q(Rx−Q b)∣∣ =T
2 ∣∣Rx− ∣∣ , :b

~
2 b
~ = Q b.T

A = QR

A ∈ Cm,n

A ∈ Rm,n

n

A ∈ Rm,n m,n

NumCSE - Complete Ch. 13 22

For we consider the rank-1 modification

Given a full QR-decomposition orthogonal, and

 upper triangular, the goal is to find an efficient algorithm that yields a QR-
decomposition of a product of orthogonal transformations,

 upper triangular:

1. Compute

2. Orthogonally transform , this can be done by applying
ivens rotations from bottom to top.

3. Convert into upper triangular form by Givens rotations
.

3.4 Singular Value Decomposition (SVD)

3.4.1 SVD: Definition and Theory

For any there are unitary/orthogonal matrices and a
generalized diagonal matrix

 such that

Definition: The decomposition is called the singular value decomposition
(SVD) of . The diagonal entries of of are the singular values of . The columns of

 are the left/right singular vectors of .

Remark: As in the case of QR-decomposition we can also drop the bottom zero rows of
and the corresponding columns of in the case of . Thus we end up with an
economical singular value decomposition, also called thin SVD in literature.

Lemma: The squares of the non-zero singular values of are the non-zero eigenvalues
of with associated eigenvectors
respectively.

Lemma: If, for some the singular values of satisfy
 then

 (the number of non-zero singular values)

A ∈ R , m ≥m,n n, rank(A) = n,

A→ :A
~
= A+ uv , u ∈T R , v ∈m R .n

A = QR = , Q ∈[R00] Rm,m R ∈ Rm,n

R ∈0 Rn,n
=A
~ , ∈Q

~
R
~

Q
~ Rm,m ∈R

~

Rn,n

w = Q u ∈T Rm

w → ∣∣w∣∣e , e ∈1 1 Rm m− 1

R +1 ∣∣w∣∣ e v ∈2 1
T Rn,n n− 1

=A
~

A+ uv =T with =Q
~
R
~

Q
~

QQ G G ⋯G G1
T

12
T

23
T

n−1,n−2
T

n,n−1
T

A ∈ Km,n U ∈ K , V ∈m,m Kn,n

Σ = diag(σ , ...,σ) ∈1 p R , p :m,n = min{m,n}, σ ≥1
σ ≥2 ⋯≥ σ ≥p 0

A = UΣV .H

A = UΣV H

A σi Σ A

U/V A

Σ
U m > n

σi
2 A

A A, AAH H (V) , ..., (V) , (U) , ..., (U):,1 :,p :,1 :,p

1 ≤ r ≤ p := min{m,n}, A ∈ Km,n

σ ≥1 ⋯≥ σ >r σ =r+1 ⋯σ =p 0,

rank(A) = r

NumCSE - Complete Ch. 13 23

3.4.2 SVD in Eigen
Computing SVDs in Eigen

#include <Eigen/SVD>

std::tuple<MatrixXd, MatrixXd, MatrixXd> svd_full(const MatrixXd& A) {
 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeFullU | Eigen::ComputeFullV);
 MatrixXd U = svd.matrixU();
 MatrixXd V = svd.matrixV();
 VectorXd sv = svd.singularValues();
 MatrixXd Sigma = MatrixXd::Zero(A.rows(), A.cols());
 const unsigned p = sv.size();
 Sigma.block(0, 0, p, p) = sv.asDiagonal();
 return std::tuple<MatrixXd, MatrixXd, MatrixXd>(U, Sigma, V);
}

It holds that

Eigen's algorithm for computing SVD is numerically stable

The asymptotic complexity for the economical SVD is

Computing rank of matrix through SVD

MatrixXd::Index rank_by_svd(const MatrixXd &A, double tol = EPS) {
 if(A.norm == 0) return MatrixXd::Index(0);
 Eigen::JacobiSVD<MAtrixXd> svd(A);
 const VectorXd sv = svd.singularValues();
 MatrixXd::Index n = sv.size();
 MatrixXd::Index r = 0;
 while((r < n) && sv(r) >= sv(0)*tol) r++;
 return r;
}

Computation using rank() in Eigen

MatrixXd::Index rank_eigen(const MatrixXd& A, double tol = EPS) {
 return A.jacobiSVD().setThreshold(tol).rank();
}

3.4.3 Solving General Least-Squares Problems by SVD
In this chapter we consider the most general setting

N (A) = Span{(V) , ..., (V) }:,r+1 :,n

R(A) = Span{(U) , ..., (U) }:,1 :,r

O(min{m,n} ⋅2 max{m,n})

Ax = b ∈ R with A ∈m R , rank(A) =m,n r ≤ min{m,n}.

NumCSE - Complete Ch. 13 24

We can use the invariance of the 2-norm of a vector with respect to multiplication with
 together with the fact that is unitary:

With this equation we arrive at the generalized solution

Computing generalized solution of via SVD

#include <Eigen/SVD>

VectorXd lsqsvd(const MatrixXd &A, const VectorXd &b) {
 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeThinU | Eigen::ComputeThinV);
 VectorXd sv = svd.singularValues();
 unsigned int r = svd.rank();
 MatrixXd U = svd.matrixU(), V = svd.matrixV();

 return V.leftCols(r) * (sv.head(r).cwiseinverse().asDiagonal() *
 (U.leftCols(r).adjoint() * b));
}

Computation via solve() method

VectorXd lsqsvd_eigen(const MatrixXd &A, const VectorXd &b) {
 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeThinU | Eigen::ComputeThinV);
 return svd.solve(b);
}

Theorem: If has the SVD decomposition then its Moore-Penrose
pseudoinverse is given by .

3.4.4 SVD-Based Optimization and Approximation
3.4.4.1 Norm-Constrained Extrema of Quadratic Forms

We consider the following problem of finding the extrema of quadratic forms on the
Euclidean unit sphere :

This problem can be solved with SVD with the minimizer from which
we can obtain the minimal value .

Solving the minima problem with SVD in Eigen

U :
= [U U]1 2 U

∣∣Ax− b∣∣ =2 [U U] x−
∣
∣∣
∣
∣
∣∣
∣

1 2 [Σr

0
0
0

] [V1T
V2

T] b =
∣
∣∣
∣
∣
∣∣
∣
2

−
∣
∣∣
∣
∣
∣∣
∣ [Σ V xr 1

T

0
] .[U b1

T

U b2
T]

∣
∣∣
∣
∣
∣∣
∣
2

x =† V Σ U b, ∣∣r∣∣ =1 r
−1

1
T

2 ∣∣U b∣∣ .2
T

2

Ax = b

A ∈ Km,n A = UΣV H

A =† V Σ U1 r
−1

1
H

{x ∈ K :n ∣∣x∣∣ =2 1}

given A ∈ K , m ≥m,n n, find x ∈ K , ∣∣x∣∣ =n
2 1, ∣∣Ax∣∣ →2 min.

x =∗ V e =n (V):,n
∣∣Ax ∣∣ =∗

2 σn

NumCSE - Complete Ch. 13 25

double minconst(VectorXd &x, const MatrixXd &A) {
 MatrixXd::Index m = A.rows(), n = A.cols();
 if(m < n) throw std::runtimer_error("A must be tall matrix");
 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeThinV);
 x.resize(n); x.setZero(); x(n-1) = 1.0;
 x = svd.matrixV() * x;
 return (svd.singularValues())(n-1);
}

Lemma: If has singular values ,
then its Euclidean matrix norm is given by . If and is
regular/invertible, then its 2-norm condition number is .

3.4.4.2 Best Low-Rank Approximation

Thomas: TLDR for the best k-rank approximation you turn the sigma into matrix (cut
everything else away) then you take away the columns in U and V accordingly.

3.4.4.3 Principal Component Data Analysis (PCA)

whatever

3.6 Constrained Least Squares
We define linear least squares problems with linear constraints as follows:

Given:

Find such that:

This problem can be solved via SVD the following way:

1. Compute an orthonormal basis of using SVD

and the particular solution of the constraint equation

This gives us a representation of the solution of the form

A ∈ Km,n σ ≥1 σ ≥2 ⋯≥ σ ≥p 0, p := min{m,n}
∣∣A∣∣ =2 σ (A)1 m = n A

cond (A) =2 σ /σ1 n

k × k

A ∈ R , m ≥m,n n, rank(A) = n, b ∈ Rm

C ∈ R , p <p,n n, rank(C) = p, d ∈ Rp

x ∈ Rn

∣∣Ax− b∣∣ →2 min, and Cx = d.

N (C)

C = U [Σ 0] , U ∈[V1T
V2

T] R , Σ ∈p,p R , V ∈p,p
1 R , V ∈n,p

2 Rn,n−p

⇒ N (C) = R(V)2

x ∈0 N (C) =T R(V)1

x :0 = V Σ U d.1
−1 T

x

NumCSE - Complete Ch. 13 26

2. Insert this representation into the LSQ problem. This yields s standard linear least
squares problem with coefficient matrix and a right hand side vector

:

4. Midterm Prep-Questions

4.1 HS 2019

4.1.1 Rank-1 Modifications

A rank-1 modification of affects at most entries of the matrix.

False - Choosing and will add to every entry in
.

If is a rank-1 modification of , then
.

True - The outer product of two vectors (i.e.) always produces a rank-1 matrix.
Furthermore it holds in general, that .

For every matrix there is an invertible arising from a rank-1 modification of
.

False - A matrix is only invertible if it has full rank. For any matrix with
 we therefore cannot reach a full rank by a rank-1 modification.

By rank-1 modification every matrix can be converted into a singular (non-
invertible) matrix.

True - Take for example . Then the first column of will vanish
in , and this will result in not being a full-rank matrix (and therefore also not
invertible)

Let be the matrix arising from by replacing it's -th row with ,
where is a given vector. What rank-1 modification of spawns . Give and
such that .

We can choose and .

4.1.2 Computational cost of numerical linear algebra operations

double sumtrv1(const Eigen::MatrixXd &A, const Eigen::VectorXd &b) {
 const int n = A.cols();

x = x +0 V y, y ∈2 R .n−p

AV ∈2 Rm,n−p

b−Ax ∈0 Rm

∣∣A(x +0 V y) −2 b∣∣ →2 min ⟺ ∣∣AV y−2 (b−Ax)∣∣ →0 2 min.

A ∈ Rn,n 2n− 1

u = (1, 1, ..., 1)T v = (1, 1, ..., 1)T 1
A

A
~

A ∈ Rn,n rank(A) − 1 ≤ rank() ≤A
~

rank(A) + 1

uvT

rank(A+B) ≤ rank(A) + rank(B)

A ∈ Rn,n A
~

A

A A

rank(A) < n− 1

A ∈ Rn,n

u := (A) , v ::,1 = −e1 A

A
~

A
~

A
~

A ∈ Rm,n k (A)k,: wT

w ∈ Rn A A
~

u v

=A
~

A+ uvT

u = ek v = w − ((A))k,:
T

NumCSE - Complete Ch. 13 27

 assert((A.rows() == n) && (b.size() == n));

 return b.transpose() *
 A.triangularView<Eigen::Upper>().solve(
 Eigen::MatrixXd::Identity(n,n)) * b;
}

Asymptotic complexity for :

 - We are solving linear systems of equations with an upper triangular
system matrix. This amounts to backward substitutions, each of which costs
operations.

double sumtrv2(const Eigen::MatrixXd &A, const Eigen::VectorXd &b) {
 const int n = A.cols();
 assert((A.rows() == n) && (b.size() == n));

 return b.transpose() * A.triangularView<Eigen::Upper>().solve(b);
}

Asymptotic complexity for :

 - We solve a single upper triangular linear system of equations. Solving
such a linear system of equations takes operations. (The vector multiplications do
not matter since they require operations)

Eigen::VectorXd diagmodsolve1(Eigen::MatrixXd A, const Eigen::VectorXd &b) {
 const int n = A.cols();
 assert((A.rows() == n) && (b.size() == n));
 Eigen::VectorXd x{Eigen::VectorXd::Zero(n)};
 double tmp = A(0, 0);
 for(int i = 0; i < n; ++i) {
 if(i > 0) {
 A(i-1, i-1) = tmp;
 }
 tmp = A(i, i);
 A(i, i) *= 2.0;
 x += A.lu().solve(b);
 }
 return x;
}

Asymptotic complexity for :

 - We solve a dense linear system of equations times.

Eigen::VectorXd diagmodsolve2(const Eigen::MatrixXd &A, const Eigen::VectorXd &b) {
 const int n = A.cols();
 assert ((A.rows() == n) && (b.size() == n));
 const auto Alu = A.lu();
 const auto z = Alu.solve(b);

n→∞ O(n), O(n), O(n) or O(n) ?2 3 4

O(n)3 n n× n

n O(n)2

n→∞ O(n), O(n), O(n) or O(n) ?2 3 4

O(n)2 n× n

O(n)2

O(n)

n→∞ O(n), O(n), O(n) or O(n) ?2 3 4

O(n)4 n× n n

NumCSE - Complete Ch. 13 28

 const auto W = Alu.solve(Eigen::MatrixXd::Identity(n, n));
 const Eigen::VectorXd alpha = Eigen::VectorXd::Constant(n, 1.0) +
 A.diagonal().cwiseProduct(W.diagonal());
 if((alpha.cwiseAbs().array() < 1E-12).any()) {
 throw std::runtime_error("Tiny pivot!");
 }
 return n * z - W * z.cwiseProduct(A.diagonal().cwiseQuotient(alpha));
}

Asymptotic complexity for :

 - Due to the LU-decomposition of an densely populated matrix in Line 4.

4.1.3 Cancellation

double f1(double x) { return std::log(std::sqrt(x * x + 1) - x); }

No cancellation or cancellation? If there is cancellation, give and a
cancellation-free implementation of the function.

Cancellation for . Use the equation to prevent cancellation.

Cancellation-free implementation:

double f1(double x) {
 return (x > 0.0) ? -std::log((std::sqrt(x * x + 1) + x)) :
 std::log((std::sqrt(x * x + 1) - x));
}

double f2(double x) {
 assert(x > 0);
 return std::log(x * x + 1) - 2 * std::log(x);
}

No cancellation or cancellation? If there is cancellation, give and a
cancellation-free implementation of the function.

Cancellation for . Use the equation to prevent
cancellation. Cancellation-free implementation:

double f2(double x) {
 assert(x > 0);
 const double y = 1.0 / x;
 return std::log(y * y + 1);
}

double f3(double x) {
 assert((x >= -1) && (x <= 1));

n→∞ O(n), O(n), O(n) or O(n) ?2 3 4

O(n)3 n× n

x ≃ ???

x ≃ +∞ a− b =
a+b

a −b2 2

x ≃ ???

x ≃ +∞ log a− log b = log
b
a

NumCSE - Complete Ch. 13 29

 return 1 - std::sqrt(1 - x * x);
}

No cancellation or cancellation? If there is cancellation, give and a
cancellation-free implementation of the function.

Cancellation for . Use to prevent cancellation. Cancellation-free

implementation:

double f3(double x) {
 assert((x >= -1) && (x <= 1));
 const double s = x * x;
 return s / (1 + std::sqrt(1 - s));
}

double f4(double x) {
 const double s = std::cos(x);
 return std::sqrt(1 - s * s);
}

No cancellation or cancellation? If there is cancellation, give and a
cancellation-free implementation of the function.

Cancellation for . Use the trigonometric identity
 to prevent cancellation. Cancellation-free implementation:

double f4(double x) {
 return std::abs(std::sin(x));
}

4.2 HS 2018

4.2.1 Singular Value Decomposition
Let be defined as

What are the non-zero singular values of ?

We first calculate get the eigenvalues of :

x ≃ ???

x ≃ 0 a− b =
a+b

a −b2 2

x ≃ ???

x ≃⋯ ,−π, 0,π, 2π, ⋯ cos x+2

sin x =2 1

A ∈ R3,2

A = ⎝⎜
⎛0
1
0

2
0
0⎠⎟
⎞

A

AAT A

A A =T (10 0
4)

NumCSE - Complete Ch. 13 30

We then form the characteristic polynomial with :

This polynomial has roots and and therefore the two singular values are given by:

Consider the full singular value decomposition of . Determine
 such that and .

Per definition of the full singular value decomposition, and . We
therefore have:

Consider the reduced singular value decomposition of . Determine
 such that and .

Since we only have 2 singular values, . From this it follows, that and
.

Let be t he best rank-1 approximation of . Let denote the Frobenius
norm. What is the value ? unfinished

We first recall the definition of the Frobenius norm:

Furthermore, we recall that the best rank-1 approximation is defined as

4.2.2 Asymptotic Complexity
Consider the following Eigen/C++ code:

MatrixXd A = MatrixXd::Zero(n, n);

A(0, 0) = 1.0; A(1, 0) = 1.0;
for(int j = 1; j < n-1; ++j) {
 for(int i = j-1; i < j + 2; ++i) {
 A(i, j) = 1.0;
 }
}
A(n-2, n-1) = 1.0; A(n-1, n-1) = 1.0;

MatrixXd Q = A.householderQr().householderQ();
cout << Q;

for(int i = 0; i < n*n; ++i) {

A detA A− λIT

detA A−T λI = (1 − λ) ⋅ (4 − λ) − 0 ⋅ 0 = (1 − λ) ⋅ (4 − λ).

1 4

σ =1 =1 1 and σ =2 =4 2.

A = UΣV T A

a, b, α, β ∈ N U ∈ Ra,b V ∈ Rα,β

U ∈ Km,m V ∈ Kn,n

U ∈ R and V ∈3,3 R .2,2

A = U
~Σ~V~ T A

a, b, α, β ∈ N ∈U
~ Ra,b ∈V

~ Rα,β

Σ ∈ R2,2 U ∈ R3,2
∈V

~ R2,2

∈A
~ R3,2 A ∣∣ ⋅ ∣∣F

∣∣A− ∣∣A
~

F

∣∣A∣∣ =F Σ Σ ∣a ∣i=1
m

j=1
n

ij 2

NumCSE - Complete Ch. 13 31

 VectorXd b = VectorXd::Random(n);
 VectorXd M = A.fullPivLu().solve(b);
 cout << M;
}

FullPivLu<MatrixXd> lu = A.fullPivLu();
for(int i = 0; i < n*n; ++i) {
 VectorXd b = VectorXd::Random(n);
 VectorXd M = lu.solve(b);
 cout << M;
}

unfinished

4.2.3 Cancellation
Which side of the equations below should be preferred in order to minimize the impact of
cancellation?

RHS or LHS?

RHS

RHS or LHS?

LHS

RHS or LHS?

LHS

RHS or LHS?

RHS

4.2.4 Householder reflections
The Householder matrix for a reflection about the hyper-plane with the normal vector is
defined as

x >> 1 : =
x

(x+ 1) − x2 2

2 +
x

1

x >> 1 : =
+ xx + 12

1
−x + 12 x

small x > 0 : =
(1 + 2x)(1 + x)

2x2
−

1 + 2x
1

1 + x

1 − x

small x > 0 : (1 − x) −2 1 = x −2 2x

v

T

NumCSE - Complete Ch. 13 32

where is a unit vector. Note that is symmetric and orthogonal. We want to

reduce a matrix to an upper triangular form using successive Householder
transformations

where

Find the unit vector such that the first element of is negative and the second
is positive.

The reflecting vector can be obtained by:

Now we have to make into a unit vector by dividing it by it's length:

Find the unit vector such that the second and third element of are both
positive.

The corresponding Householder matrix can be computed as:

Premultiplying by gives:

H :v = I −m 2 =
v vT

vvT

I ,mv~v~T

=v~ ∣∣v∣∣2
v Hv

A ∈ R3,3 R

H H A =v2 v1 R,

A = .⎣⎢
⎡−3
4
0

20
−20
3

1
−1
2 ⎦⎥
⎤

∈v~1 R3 v~1

v =1 a +1 sign(a) ⋅1
1 ∣∣a ∣∣ ⋅1

2 e1

= −⎣⎢
⎡−3
4
0 ⎦⎥
⎤

5 ⋅ =⎣⎢
⎡1
0
0⎦⎥
⎤

.⎣⎢
⎡−8
4
0 ⎦⎥
⎤

v1

=v~1 ⋅
80
1

=⎣⎢
⎡−8
4
0 ⎦⎥
⎤

⋅
5
1

.⎣⎢
⎡−2
1
0 ⎦⎥
⎤

∈v~2 R3 v~2

H =v1 I −3 2
(v) v1 T 1

v (v)1 1 T

= −⎣⎢
⎡1
0
0

0
1
0

0
0
1⎦⎥
⎤

2 =⎣⎢
⎡ 5

4

− 5
2

0

− 5
2

5
1

0

0
0
0⎦⎥
⎤

.⎣⎢
⎡− 5

3

5
4

0

5
4

5
3

0

0
0
1⎦⎥
⎤

A Hv1

7

NumCSE - Complete Ch. 13 33

Now we can obtain as follows:

To get the unit vector we divide by its length:

H A =v1 .⎣⎢
⎡5
0
0

−28
4
3

− 5
7

5
1

2 ⎦⎥
⎤

v2

v =2 +⎣⎢
⎡0
4
3⎦⎥
⎤

5 =⎣⎢
⎡0
1
0⎦⎥
⎤

.⎣⎢
⎡0
9
3⎦⎥
⎤

v~2 v2

=v~2 =
90

1

⎣⎢
⎡0
9
3⎦⎥
⎤

.
10

1

⎣⎢
⎡0
3
1⎦⎥
⎤

	0. Table of Content
	1. Computing with Matrices and Vectors
	2. Direct Methods for Square Linear Systems of Equations
	3. Direct Methods for Linear Least Squares Problems
	4. Midterm Prep-Questions

