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1. Computing with Matrices and Vectors

1.1 Fundamentals

1.1.1 Notations
In this lecture we denote column vectors with  and row vectors with . For example,  
denotes the vector space of column vectors whereas  denotes the vector space of row 
vectors. We denote sub vectors with .

We denote matrices with . In this lecture, matrices are two-dimensional arrays of real or 
complex numbers:

3.1.1 Least Squares Solutions: Definitions
3.1.2 Normal Equations
3.1.3 Moore-Penrose Pseudoinverse

3.2 Normal Equation Methods
3.3 Orthogonal Transformation Methods

3.3.1 Transformation Idea
3.3.2 Orthogonal/Unitary Matrices
3.3.3 QR-Decomposition
3.3.4 QR-Based Solver for Linear Least Squares Problems
3.3.5 Modification Techniques for QR-Decomposition

3.4 Singular Value Decomposition (SVD)
3.4.1 SVD: Definition and Theory
3.4.2 SVD in Eigen
3.4.3 Solving General Least-Squares Problems by SVD
3.4.4 SVD-Based Optimization and Approximation

3.6 Constrained Least Squares
4. Midterm Prep-Questions

4.1 HS 2019
4.1.1 Rank-1 Modifications
4.1.2 Computational cost of numerical linear algebra operations
4.1.3 Cancellation

4.2 HS 2018
4.2.1 Singular Value Decomposition
4.2.2 Asymptotic Complexity
4.2.3 Cancellation
4.2.4 Householder reflections

x xT Kn
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(x) =k:l [x ,  ...,  x ] ,  1 ≤k l
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X

A := ∈⎣⎢⎢
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⋮
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⎦⎥⎥
⎤

Kn,m



NumCSE - Complete Ch. 13 3

Here,  denotes the vector space of -matrices, where  is the number of rows and 
 is the number of columns. We denote matrix blocks with . 

We define the (hermitian) transposed matrix as:

1.2 Software and Libraries

1.2.1 Eigen
Eigen  is a header-only C++ template library designed to enable easy, natural and efficient 

numerical linear algebra: it provides data structures and a wide range of operations for 
matrices and vectors. 

A generic matrix data type is given by the templated class:

Eigen::Matrix<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>

Here Scalar  is the underlying scalar type of the matrix entries, usually either double, float or 
complex<>.

Matrix and vector data types in Eigen

#include <Eigen/Dense> 
 
template <typename Scalar> 
void eigenTypeDemo(unsigned int dim) { 
 // General dynamic matrices 
 using dynMat_t = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>; 
 // Dynamic column vectors 
 using dynColVec_t = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>; 
 using index_t = typename dynMat_t::Index; 
 using entry_t = typename dynMat_t::Scalar; 
 // Declare vectors of size 'dim', not yet initialized 
 dynColVec_t colvec(dim); 
 // Initialisation through component access 
 for(index_t i = 0; i < colvec.size(); ++i) colvec[i] = (Scalar)i; 
}

The following convenience data types are provided by Eigen:

MatrixXd  is a generic variable size matrix with double precision entries

VectorXd, RowVectorXd  is a dynamic column or row vector

MatrixNd  with  for small fixed size square -matrices

VectorNd  with  for small column vector with fixed length 

Kn,m n×m n

m (A) :k:l,r:s = [a ]ij i=k,...l; j=r,...,s

A :H = :⎣⎢⎢
⎡a11
⋮

an1

⋯

⋯

a1m

⋮
anm

⎦⎥⎥
⎤H

= ⎣⎢⎢
⎡a11

⋮
a1m

⋯

⋯

an1

⋮
amn

⎦⎥⎥
⎤

N = 2, 3, 4 N ×N

N = 2, 3, 4 N
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The d  in the type name may be replaced with i  for int , f  for float , and cd  for 
complex<double>  to select another basic scalar type. All matrix type feature the methods 
cols(), rows() , and size()  telling the number of columns, rows, and total number of 

entries. 

Initialization of dense matrices in Eigen

#include <Eigen/Dense> 
// Just allocate space for matrix, no initialisation 
Eigen::MatrixXd A(rows, cols); 
// Zero matrix 
Eigen::MatrixXd O = MatrixXd::Zero(rows, cols); 
// Ones matrix 
Eigen::MatrixXd B = MatrixXd::Ones(rows, cols); 
// Matrix with all entries same as value 
Eigen::MatrixXd C = MatrixXd::Constant(rows, cols, value); 
// Random matrix, entries uniformly distributed in [0,1] 
Eigen::MatrixXd E = MatrixXd::Random(rows, cols); 
// Identity matrix 
Eigen::MatrixXd I = MatrixXd::Identity(rows, cols); 
std::cout << "size of A = (" << A.rows() << ',' << A.cols() ')' << std:endl;

Access to sub-matrices in Eigen

The method block(int i, int j, int p, int q)  returns a reference to the sub-matrix with 
upper left corner at position  and size . The methods row(int i)  and col(int j)  
provide a reference to the corresponding row and column of the matrix.

Remark

If you want a C++ code built using the Eigen library to run fast, for instance, for large 
computations or runtime measurements, you should compile in release mode, that is, with 
the compiler switches -O2 -DNDEBUG  (for gcc or clang).

1.2.3 Dense Matrix Storage Formats
All numerical libraries store the entries of a (generic = dense) matrix  in a linear 
array of length . Accessing entries entails suitable index computations.

1.4 Computational Effort
Large scale numerical computations require immense resources and execution time of 
numerical codes often becomes a central concern. Therefore, much emphasis has to be putt 
on

(i, j) p × q

A ∈ Km,n

mn

A = ⎣⎢
⎡1
4
7

2
5
8

3
6
9⎦⎥
⎤

Row major: [1,  2,  3,  4,  5,  6,  7,  8,  9]
Column major: [1,  4,  7,  2,  5,  8,  3,  6,  9]



NumCSE - Complete Ch. 13 5

1. designing algorithms that produce a desired result with nearly minimal computational 
effort

2. exploit possibilities for parallel and vectorised execution

3. organising algorithms in order to make them fit memory hierarchies

4. implementing codes that make optimal use of hardware resources and capabilities

Definition: The computational effort required by a numerical code amounts to the number of 
elementary operations (additions, subtractions, multiplications, divisions, square roots) 
executed in a run.

1.4.1 Asymptotic Computational Complexity

Definition: The asymptotic (computational) complexity of an algorithm characterises the 
worst-case dependence of it's computational effort on one or more problem size parameters 
when these tend to .

1.4.2 Cost of Basic Linear-Algebra Operations
Performing elementary BLAS-type operations through simple (nested) loops, we arrive at the 
following complexity bounds:

Computational Cost of Basic Numerical Linear Algebra Operations

Operation Description #mul/div #add/sub
asymptotic

complexity

dot product n n-1 O(n)

tensor
product

nm 0 O(mn)

matrix *
vector

mn (n-1)m O(mn)

matrix
product

mnk mk(n-1) O(mnk)

1.4.3 Improving Complexity in Numerical Linear Algebra
Efficient associative matrix multiplication

Given  we may compute the vector  in two ways:

1. , T = (a*b.transpose())*x;  → complexity 

2.  t = a*b.dot(x)  → complexity 

Definition: The Kronecker product  of two matrices  and  is the 
-matrix 

∞

(x ∈ R , y ∈n R ) →n x yH

(x ∈ R , y ∈m R ) →n xyH

(x ∈ R ,A ∈n R ) →m,n Ax

(A ∈ R ,B ∈m,n R ) →n,k

AB

a ∈ K ,  b ∈m K ,  x ∈n Kn y = ab xT

y = (ab )xT O(mn)

y = a(b x),T O(m+ n)

A⊗B A ∈ Km,n B ∈ Kl,k

(ml) × (nk)

https://www.notion.so/dot-product-c4bf03fc3922434bbb64ea392623a049
https://www.notion.so/tensor-product-c7a350834fc940908a4eeaa9592bdf1a
https://www.notion.so/matrix-vector-56026c5d2c024b1ba6f839764fd9ab83
https://www.notion.so/matrix-product-f577f40154064f05b42b69af4f0b998c


NumCSE - Complete Ch. 13 6

Efficient multiplication of Kronecker product with vector in Eigen

template <class Matrix, class Vector> 
void kronmultv(const Matrix &A, const Matrix &B, const Vector &x, Vector &y) { 
 unsigned int m = a.rows(); unsigned int n = A.cols(); 
 unsigned int l = B.rows(); unsigned int k = B.cols(); 
 Matrix t = B * Matrix::Map(x.data(), k, n) * A.transpose(); 
 y = Matrix::Map(t.data(), m*l, 1); 
}

1.5 Machine Arithmetic and Consequences

1.5.2 Machine Numbers
The reason, why computers must fail to execute exact computations with real numbers is 
clear: computers are finite automatons, which therefore can only handle finitely many 
number, not . This is an essential property: , the set of machine numbers, is a finite, 
discrete subset of .

The set of machine numbers  cannot be close under elementary 
arithmetic operations  that is, when adding, multiplying, 
etc., two machine numbers the result may not belong to .  The results 
of elementary operations with operands in  have to be mapped back 
to , an operation called rounding. This leads to the fact, that 
roundoff errors are inevitable.

1.5.3 Roundoff Errors

Definition: Let  be an approximation of . Then the absolute error is given by

and its relative error is defined as

A⊗B := ∈

⎣⎢
⎢⎢⎢
⎡ (A) B11
(A) B21

⋮
(A) Bm1

(A) B12
(A) B22

⋮
(A) Bm2

⋯
⋯

⋯

(A) B1n

(A) B2n

⋮
(A) Bmn

⎦⎥
⎥⎥⎥
⎤

Kml, nk

R M
R

M
+,  −,  ⋅,  /,

M
M

M

∈x~ K x ∈ K

ϵ :abs = ∣x− ∣,x~

ϵ :rel = .
∣x∣

∣x− ∣x~
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The number of correct digits of an approximation  of  is defined through the relative 
error: If , then  has  correct digits, .

Definition: Correct rounding is given by the function

1.5.4 Cancellation
We define the term cancellation as the subtraction of almost equal numbers (with both having
some relative error), which leads to an extreme amplification of the relative errors.

Example: Assume two numbers  and , both with a relative error of , i.e.  and 
. The subtraction of both number should yield , but due to the relative errors it yields 
, almost three times as big as expected.

2. Direct Methods for Square Linear Systems of 
Equations

2.1 Introduction: Linear Systems of Equations (LSE)
The problem: solving a linear system

We are given the following input and are looking for the output as shown below:

Input/data: square matrix , vector 

Output/result: solution vector , such that 

We call  the system matrix or coefficient matrix and  the right hand side vector.

2.2 Theory: Linear Systems of Equations (LSE)

2.2.1 LSE: Existence and Uniqueness of Solutions

Definition: We say that  is invertibel/regular iff. . 
 is called the inverse of  and is noted as .

Definition: Given , the range/image (space) of  is the subspace of  spanned 
by the columns of 

The kernel/nullspace of A is

x~ x ∈ K
ϵ ≤rel 10−l x~ l l ∈ N0

rd: R → M,  x→max argmin ∣x−∈Mx~ ∣x~

2.0 1.9 5% 2.1
1.81 0.1
0.29

A ∈ Kn,n b ∈ Kn

x ∈ Kn Ax = b

A b

A ∈ Kn,n ∃B ∈ K :n,n AB = BA = I

B A B = A−1

A ∈ Km,n A Km

A

R(A) := {Ax,  x ∈ K } ⊂n R .m

N (A) := {z ∈ R :n Az = 0}.
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Definition: The rank of a matrix , denoted by , is the maximal number 
of linearly independent rows/columns of . Equivalently, .

Theorem: A square matrix  is invertible/regular if one of 
the following equivalent conditions is satisfied: 
1.  
2. the columns or rows of  are linearly independent 
3.  
4. 

2.3 Gaussian Elimination (GE)

2.3.1 Basic Algorithm
The idea of Gaussian elimination is the transformation of a linear system of equations into a 
"simpler", but equivalent LSE by means of successive row transformations. We define row 
transformations as a left multiplication with a transformation matrix.

Obviously, left multiplication with a regular matrix does not affect the solution of an LSE, 
formally: for any regular 

Gaussian elimination: algorithm

void gausseliminationsolve(const MatrixXd &A, const VectorXd& b, VectorXd& x) { 
 int n = A.rows(); 
 MatrixXd Ab(n, n++); 
 Ab << A, b; 
 // Forward elimination 
 for(int i = 0; i < n-1; ++i) { 
  double pivot = Ab(i, i); 
  for(int l = i+1; k < n; ++k) { 
   double fac = Ab(k, i) / pivot; 
   Ab.block(k, i+1, 1, n-i) -= fac * Ab.block(i, i+1, 1, n-1); 
  } 
 } 
 // Back substitution 
 Ab(n-1, n) = Ab(n-1, n) / Ab(n-1, n-1); 
 for(int i = n-2; i >= 0; --i) { 
  for(int l = i+1; l < n; ++l) {Ab(i, n) -= Ab(l, n) * Ab(i, l);} 
  Ab(i, n) /= Ab(i, i); 
 } 
 x = Ab.rightCols(1); // Solution in the right most column! 
}

The computational cost of Gaussian elimination is given by

M ∈ Km,n rank(M)
M rank(M) = dimR(A)

A ∈ Kn,n

∃B ∈ K :n,n BA = AB = I

A

det(A) = 0
rank(A) = n

T ∈ Kn,n

Ax = b⇒ A x =′ b ,  if A =′ ′ TA,  b =′ Tb.
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forward elimination:  Ops.

backward elimination:  Ops.

which yields a total asymptotic complexity for GE without pivoting for a generic LSE: 
.

2.3.2 LU-Decomposition
A matrix factorization expresses a general matrix  as the product of two special matrices. 
Requirements for these special matrices define the matrix factorization.

We can perform LU-Decomposition by performing the known Gaussian elimination 
algorithm, but keeping track of the negative multipliers and let them take the places of matrix 
entries mate to vanish:

After performing the above Gaussian elimination, we get the following decomposition

Definition: Given a square matrix , an upper triangular matrix  and a 
normalized lower triangular matrix  form an LU-decomposition of , if .

LU-factorization

std::pair<MatrixXd, MatrixXd> lufac(const MatrixXd &A) { 
 int n = A.rows(); 
 assert(n == A.cols()); 
 MatrixXd L{MatrixXd::Identity(n, n)}; 
 MatrixXd U{MatrixXd::Zero(n, n)}; 
 for(int k = 0; k < n; ++k) { 
  for(int j = k; j < n; ++j) { 
   U(k, j) = A(k, j) - (L.block(k, 0, 1, k) * U.block(0, j, k, 1))(0, 0); 
  } 
  for(int i = k + 1; i < n; ++i) { 
   L(i, k) = (A(i, k) - (L.block(i, 0, 1, k) * U.block(0, k, k, 1))(0, 0)) / U(k, k); 
  } 
 } 
 return { L, U }; 
}

n(n− 1)( n+3
2 )6

7

n2

n +3
2 3 O(n ) =2 O(n )3

A

⇒⎣⎢
⎡1

1
1⎦⎥
⎤
⎣⎢
⎡1
2
3

1
1
−1

0
−1
−1⎦⎥
⎤
⎣⎢
⎡ 4
1
−3⎦⎥
⎤

⇒⎣⎢
⎡1
2 1

1⎦⎥
⎤
⎣⎢
⎡1
0
3

1
−1
−1

0
−1
−1⎦⎥
⎤
⎣⎢
⎡ 4
−7
−3⎦⎥
⎤

⇒⎣⎢
⎡1
2
3
1
1⎦⎥
⎤
⎣⎢
⎡1
0
0

1
−1
−4

0
−1
−1⎦⎥
⎤
⎣⎢
⎡ 4
−7
−15⎦⎥

⎤
⎣⎢
⎡1
2
3
1
4 1⎦⎥

⎤
⎣⎢
⎡1
0
0

1
−1
0

0
−1
3 ⎦⎥
⎤
⎣⎢
⎡ 4
−7
13⎦⎥
⎤

A = LU ⇒ =⎣⎢
⎡1
2
3

1
1
−1

0
−1
−1⎦⎥
⎤

⎣⎢
⎡1
2
3

0
1
4

0
0
1⎦⎥
⎤
⎣⎢
⎡1
0
0

1
−1
0

0
−1
3 ⎦⎥
⎤

A ∈ Kn,n U ∈ Kn,n

L A A = LU
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The asymptotic complexity for LU-factorization of  is given by 
 if .

2.3.3 Pivoting
When doing pivoting in numerical methods we usually choose the relatively larges pivot, 
defined as

for , also called partial pivoting.

Lemma: For any regular  there is a permutation matrix 
, a normalized lower triangular matrix , and a regular 

upper triangular matrix , such that .

Performing explicit LU-factorization in Eigen

const Eigen::MatrixXd::Index n = A.cols(); 
assert(n == A.rows()); 
Eigen::PartialPivLU<MatrixXd> lu(A); 
MatrixXd L = MatrixXd::Identity(n, n); 
L.triangularView<StrictlyLower>() += lu.matrixLu(); 
MatrixXd U = lu.matrixLU().triangularView<Upper>(); 
MatrixXd P = lu.permutationP();

2.6 Exploiting Structure when Solving Linear Systems
By structure of a linear system we mean prior knowledge that

either certain entries of the systems vanish,

or the system matrix is generated by a particular formula.

Triangular linear systems

Triangular linear systems are linear systems of equations whose system matrix is a triangular
matrix. They can be solved by backward/forward elimination with  asymptotic 
computational effort compared to an asymptotic complexity of  for a generic dense 
matrix.

Linear Systems with arrow matrices

From , a diagonal matrix  and , we can build an 
 arrow matrix

A ∈ Rn,n n +3
2 3

O(n ) =2 O(n )3 n→∞

j ∈ {k, ...,n} such that  →
max{∣a ∣,  l = k, ...,n}jl

∣a ∣ij max

k = j,  k ∈ {i, ...,n}

A ∈ Kn,n P ∈
n,n L ∈ Kn,n

U ∈ Kn,n PA = LU

O(n )2

O(n )3

n ∈ N D ∈ K ,  c ∈n,n K ,  b ∈n K ,n α ∈ K
(n+ 1) × (n+ 1)
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In this case we have, for a LSE of the form , that

Solving an arrow system in Eigen

VectorXd arrowsys_fast(const VectorXd &d, const VectorXd &c, const VectorXd &b, 
     const double alpha, const VectorXd &y) { 
 int n = d.size(); 
 VectorXd z = c.array() / d.array(); 
 VectorXd w = y.head(n).array() / d.array(); 
 const double den = alpha - b.dot(z); 
 if(std::abs(den) < std::numeric_limits<double>::epsilon() * (b.norm() + std::abs(alpha))) { 
  throw std::runtime_error("Nearly singular system"); 
 } 
 constt double xi = (y(n) - b.dot(w)) / den; 
 return (VectorXd(n+1) << w - xi * z, xi).finished(); 
}

This code snippet yields an asymptotic complexity for solving arrow systems of  for 
.

Solving LSE subject to low-rank modification of system matrix

Given a regular matrix , let us assume that at some point in a code we are in a 
position to solve any linear system  "fast" because

either  has a favorable structure, eg. triangular,

or an LU-decomposition of  is already available

Now, a  is obtained by changing a single entry of :

We may also consider a matrix modification affecting a single row: Changing a single row: 
given 

A = ⇒

⎣⎢
⎢⎢⎡ D

b

c

α ⎦⎥
⎥⎥⎤

⎣⎢
⎢⎢⎡⋱
⋯

⋱
⋯

⋮

⋮
⋅⎦⎥
⎥⎥⎤

Ax = b

Ax = =[D
bT

c

α
] [x1

ζ
] y := [y1

η
]

⇒ ζ = ,  x =
α− b D cT −1

η− b D yT −1
1

1 D (y −−1
1 ζc).

O(n)
n→∞

A ∈ Kn,n

Ax = b

A

A

A
~

A

A, ∈A
~ K :n,n  if (i, j) =a~ij  (i , j ),  z +

∗ ∗ a  otherwise,  i , j ∈ij
∗ ∗ {1, ...,n}

⇒ =A
~

A+ z ⋅ e e .i∗ j∗
T

z ∈ Kn

A, ∈A
~ K :n,n =a~ij a  if i =ij  i ,  (z) +∗

j a  otherwise,  i , j ∈ij
∗ ∗ {1, ...,n}

⇒ =A
~

A+ e zi∗
T
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Both of the above mentioned modifications represent so-called rank-1-modifications of . 
A generic rank-1-modification reads

We consider the block partitioned linear system

The Schur complement system after elimination of  reads . We 
do block elimination again, now getting rid of  first, which yields the other Schur 
complement system

2.7 Sparse Linear Systems
We start with a rather fuzzy classification of matrices according to their number os zero:

Notion:  is said to be sparse, if

The matrix is said to be dense otherwise.

2.7.1 Sparse Matrix Storage Formats
Sparse matrix storage formats for storing a sparse matrix  are designed to achieve 
two objectives:

1. Amount of memory required is only slightly more than  scalars.

2. Computational effort for matrix vector multiplication is proportional to .

Triplet/coordinate list (COO) format

This format stores triplets :

struct Triplet { 
 size_t i;      // row index 
 size_t j;      // column index 
 scalar_t a;    // additive contribution to matrix entry 
}; 
using TripletMatrix = sttd::vector<Triplet>;

A

A ∈ K →n,n :A
~
= A+ uv ,  u, v ∈H K .n

=[ A

vH

u

−1
] [x~

ζ
] .[b

0
]

ζ (A+ uv ) =H x~ b⇔ =A
~
x~ b

x~

(1 + v A u)ζ =H −1 v A bH −1

⇒ A =x~ b− b.
1 + v A uH −1

uv AH −1

A ∈ K ,  m,n ∈n,n N

nnz(A) := #{(i, j) ∈ {1, ...,m} × {1, ...,n} : a =ij  0} << mn.

A ∈ Km,n

nnz(A)

× nnz(A)

(i,  j,  α),  1 ≤ i ≤ m,  1 ≤ j ≤ n
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The vector of triplets in a TripletMatrix   has size  We write  because repetitions 
of index pairs  are allowed. The matrix entry  is defined to be the sum of all values 

 associated with the index pair .

Compressed row-storage (CRS) format

The CRS format for a sparse matrix  keeps the data in three contiguous arrays:

std::vector<scalar_t> val  → size 

std::vector<size_t> col_ind  → size 

std:vector<size_t> row_ptr  → size  and row_ptr[n+1]  = 

2.7.2 Sparse Matrices in Eigen
Eigen can handle sparse matrices in the standard Compressed Row Storage (CRS) and 
Compressed Column Storage (CCS) format:

#include <Eigen/Sparse> 
Eigen::SparseMatrix<int, Eigen::ColMajor>  Asp(rows, cols);   // CCS format 
Eigen::SparseMatrix<double, Eigen::RowMajor> Bsp(rows, cols); // CRS format

Matrices should first be assembled in triplet format, from which as sparse matrix is built. 
Eigen offers special data types and facilities for handling triplets:

std::vector<Eigen::Triplet<double>> triplets; 
//.. fill the std::vector triplets 
Eigen::SparseMatrix<double, Eigen::RowMajor> spMat(rows, cols); 
spMat.setFromTriplets(triplets.begin(), triplets.end());

Furthermore, a triplet object can be initialized as demonstrated in the following example:

≥ nnz(A). ≥
(i, j) (A)ij

αij (i, j)

A ∈ Kn,n

nnz(A)

nnz(A)

n+ 1 nnz(A) + 1
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unsigned int row_idx = 2; 
unsigned int col_idx = 4; 
double value = 2.5; 
Eigen::Triplet<double> triplet(row_idx, col_idx, value); 
std::cout <<'(' triplet.row() << ',' << triplet.col() 
     <<',' triplet.value() << ')' << std::endl;

2.7.3 Direct Solution of Sparse Linear Systems of Equations
The standard sparse solver in Eigen is SparseLU  :

using SparseMatrix = Eigen::SparseMatrix<double>; 
void sparse_solve(const SparseMatrix &A, const VectorXd &b, VectorXd &x) { 
 Eigen::SparseLU<SparseMatrix> solver(A); 
 if(solver.info() != Eigen::Success) { 
  throw "Matrix factorization failed!"; 
 } 
 x = solver.solve(b); 
}

When solving linear systems of equations directly, dedicated sparse 
elimination solver from numerical libraries have to be used! System 
matrices are passed to these algorithms in sparse storage formats to 
convey information about zero entries. 
Never ever even think about implementing a general sparse elimination 
solver by yourself!

3. Direct Methods for Linear Least Squares 
Problems
In this chapter we study numerical methods for overdetermined (OD) linear systems of 
equations, that is, a linear system with a "tall" rectangular system matrix:

Note that the quotation marks indicate that this is not a well-defined problem in the sense 
of that  does not define a mapping  because

such a vector  may not exist,

"Ax = b" : x ∈ R ,  b ∈n R ,  A ∈m R ,  m ≥m,n n

=

⎣⎢
⎢⎢⎢⎢
⎡
A

⎦⎥
⎥⎥⎥⎥
⎤
⎣⎢
⎡
x⎦⎥
⎤

⎣⎢
⎢⎢⎢⎢
⎡
b

⎦⎥
⎥⎥⎥⎥
⎤

Ax = b (Ax) → b

x ∈ Rn
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and, even if it exists, it may not be unique.

3.1 Least Squares Solution Concepts
Throughout this chapter we consider the possibly overdetermined linear system of equations

Recall from linear algebra that  has a solution, if and only if the right hand side 
vector  lies in the image of the matrix :

Following the notation for important subspaces associated with a matrix :

image/range:  ,

kernel/nullspace:  .

3.1.1 Least Squares Solutions: Definitions

Definition: For a given  the vector  is a least squares solution 
of the linear system of , if

In other words, a least squares solution is any vector  that minimizes the Euclidean norm 
of the residual .

We write  for the set of least squares solutions of the linear system of equations 

Example: Linear regression

Given: measured data points 

Known: without measurement errors, data would satisfy affine linear relationship 
, for some parameters .

Solving the overdetermined linear system 
of equations in least squares sense we 
obtain a least squares estimate for the 
parameters  and 

x ∈ R :n "Ax = b",  b ∈ R ,  A ∈m R ,  m ≥m,n n.

Ax = b

b A

∃x ∈ R :n Ax = b⇔ b ∈ R(A).

A ∈ Km,n

R(A) := {Ax,  x ∈ K } ⊂n Km

N (A) := {x ∈ K :n Ax = 0}

A ∈ R ,  b ∈m,n Rm x ∈ Rn

Ax = b

x ∈ argmin ∣∣Ay−y∈Rn b∣∣ ,2
2

∣∣Ax− b∣∣ =2
2 min ∣∣Ay−y∈Rn b∣∣ =2

2 min ( (A) y −y ,...,y ∈R1 n

i=1

∑
m

j=1

∑
n

ij j (b) )i 2

x

r = b−Ax

lsq(A, b)
Ax = b,  A ∈ R ,  b ∈m,n R :m

lsq(A, b) := {x ∈ R :n x is a least squares solution of Ax = b} ⊂ R .n

(x ,  y ),  x ∈i i i R,  i = 1, ...,m,  m ≥ n+ 1

y =
a x+T β a ∈ R ,  β ∈n R

a β
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In statistics, solving this equation is known 
as a linear regressions.

Theorem: For any  a least squares solution of  exists.

3.1.2 Normal Equations

Theorem: The vector  is a least squares solution of the linear system of equations 
 if and only if it solves the normal equations (NEQ)

Theorem: For  holds

Lemma: For any matrix  holds

We define the orthogonal complement of a subspace :

Corollary: If  and , then the linear system of equations 
 has a unique least squares solution

that can be obtained by solving the normal equations.

The assumption that  is also called a full-rank condition (FRC), because 
.

(a,β) = argmin ∣y −a∈R , β∈Rn

i=1

∑
m

i a x −T
i β∣ .2

A ∈ R ,  b ∈m,n Rm Ax = b

x ∈ Rn

Ax = b,  A ∈ R ,  b ∈m,n R ,m

A Ax =T A b.T

A ∈ R ,  m ≥m,n n,

N (A A) =T N (A),
R(A A) =T R(A).

A ∈ Km,n

N (A) = R(A )H ⊥

N (A) =⊥ R(A ).H

V ⊂ Kk

V :⊥ = {x ∈ K :k x y =H 0 ∀y ∈ V }.

m ≥ n N (A) = {0} Ax = b,  A ∈
R ,  b ∈m,n R ,m

x = (A A) A b,T −1 T

N (A) = 0
N (A) = 0 ⇔ rank(A) = n
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3.1.3 Moore-Penrose Pseudoinverse

Definition: The generalized solution  of a linear system of equations 
 is defined as

In other words, the generalized solution is the least squares solution with minimal norm.

Theorem: Given  the generalized solution  of the linear system of 
equations  is given by 

where  is any matrix whose columns form a basis of .

The matrix  is called the Moore-Penrose 
pseudoinverse of . Note, that the Moore-Penrose pseudoinverse does not depend on the 
choice of .

3.2 Normal Equation Methods
We can give a simple algorithm for the normal equation method for solving full-rank least 
squares problems :

1. Compute regular matrix .

2. Compute right hand side vector .

3. Solve symmetric positive definite (s.p.d.) linear system of equations .

Definition:  is symmetric (Hermitian) positive definite (s.p.d.), if

If  for all , we say that  is positive semi-definite.

Solving a linear least squares problem via normal equations

VectorXd normeqsolve(const MatrixXd &A, const VectorXd &b) { 
 if(b.size() != A.rows()) throw runtime_error("Dimension mismatch!"); 
 VectorXd x = (A.transpose() * A).llt().solve(A.transpose() * b); 
 return x; 
}

The asymptotic complexity of the normal equation method is given by  for 
.

x ∈† Rn Ax =
b,  A ∈ R ,  b ∈m,n R ,m

x :† = argmin{∣∣x∣∣ :2 x ∈ lsq(A, b)}.

A ∈ R ,  b ∈m,n R ,m x†

Ax = b

x =† V (V A AV ) (V A b),T T −1 T T

V N (A)⊥

A :† = V (V A AV ) V A ∈T T −1 T T Rn,m

A

V

Ax = b

C := A A ∈T Rn,n

c := A bT

Cx = c

M ∈ Kn,n

M =M  and ∀x ∈H K :n x Mx >H 0 ⇔ x = 0.

x Mx ≥H 0 x ∈ Kn M

O(n m+2 n )3

m,n→∞
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3.3 Orthogonal Transformation Methods

3.3.1 Transformation Idea
In this chapter we consider the full-rank linear least squares problem  
given and we try to find . We furthermore know that  
and  has full rank: .

Furthermore it is to note, that we call two overdetermined linear systems  and 
 equivalent, if both have the same set of least squares solutions: 
.

The idea is that if we have a transformation matrix  satisfying 
, then

where  and .

3.3.2 Orthogonal/Unitary Matrices

Definition: Unitary and orthogonal matrices

 is unitary, if 

 is orthogonal, if 

Theorem: A matrix is unitary/orthogonal, if and only if the associated linear mapping 
preserves the 2-norm:

From the above theorem we can directly state the following conclusions. If a matrix 
 is unitary/orthogonal, then

all rows/columns have Euclidean norm 

all rows/columns are pairwise orthogonal (w.r.t Euclidean inner product)

, and all eigenvalues 

 for any matrix 

3.3.3 QR-Decomposition
3.3.3.1 QR-Decomposition: Theory

We first recall the Gram-Schmidt orthogonalization algorithm as follows:

Input: 

A ∈ Rm,n,  b ∈ Rm

x = argmin ∣∣Ay−y∈Rn b∣∣2 m ≥ n

A rank(A) = n

Ax = b

x =A
~

b
~ lsq(A, b) =

lsq( , )A
~

b
~

T ∈ Rm,m ∣∣Ty∣∣ =2
∣∣y∣∣  ∀y ∈2 Rm

argmin ∣∣Ay−y∈Rn b∣∣ =2 argmin ∣∣ y−y∈Rn A
~ ∣∣ ,b

~
2

=A
~

TA =b
~

Tb

Q ∈ K ,  n ∈n,n N, Q =−1 QH

Q ∈ K ,  n ∈n,n N, Q =−1 QT

Q ∈ K  unitary ⟺n,n ∣∣Qx∣∣ =2 ∣∣x∣∣  ∀x ∈2 K .n

Q ∈
Kn,n

= 1

∣detQ∣ = 1,  ∣∣Q∣∣ =2 1 ∈ {z ∈ C : ∣z∣ = 1}
∣∣QA∣∣ =2 ∣∣A∣∣2 A ∈ Kn,m

{a , ...,a } ⊂1 n Km



NumCSE - Complete Ch. 13 19

Output: 

The algorithm is given by:

for   do {  

;

for   do{  

; }  

if   then STOP  

else{   }}  

Theorem: If  is linearly independent, then the Gram-Schmidt algorithm 
computes orthogonal vectors  satisfying

 for all .

Theorem: For any matrix  with  there exists

1. a unique matrix  that satisfies , and a unique upper triangular 
Matrix  with , such that

2. a unitary Matrix  and a unique upper triangular matrix  with 
, such that

If , all matrices will be real and  is then orthogonal.

3.3.3.2 Computation of QR-Decomposition

Corollary: The product of two orthogonal/unitary matrices of the same size is again 
orthogonal/unitary.

The following so called Householder matrices (HHM) effect the reflection of a vector into a 
multiple of the first unit vector with the same length:

{q , ...q }1 n

q :1 = ∣∣a ∣∣1 2

a1

j = 2, ...,n

q :j = aj

l = 1, 2, ..., j − 1

q ←j q − <j a , q >j l ql

(q =j 0)

q ←j
∣∣q ∣∣j 2

qj

{a , ...,a } ⊂1 n Rm

q , ...q ∈1 n Rm

Span{q , ..., q } =1 l Span{a , ...,a },1 l

l ∈ {1, ...,n}

A ∈ Kn,k rank(A) = k

Q ∈0 Rn,k Q Q =0
H

0 Ik
R ∈0 Kk,k (R) >ii 0,  i ∈ {1, ...,k}

A = Q ⋅0 R  ("economical" QR-decomposition)0

Q ∈ Kn,n R ∈ n,k (R) >ii

0,  i ∈ {1, ...,n}

A = Q ⋅R (full QR-decomposition)

K = R Q

Q = H(v) := I − 2  with v =
v vT

vvT

a± ∣∣a∣∣ e2 1
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where  is the first Cartesian basis vector.

Suitable successive Householder transformations determined by the left most column of 
shrinking bottom right matrix blocks can be used to achieve upper triangular form . Writing 

 for the Householder matrix used in the -th factorization yields for the QR-
decomposition of 

The following orthogonal transformation, a Givens rotation, annihilates the -th 
component of a vector . Here  stands for  and  for ,  
the angle of rotation:

The QR-decomposition by successive Householder transformations has asymptotic 
complexity  for .

Definition: For  we call

Furthermore we define  as the bandwidth of .

Theorem: If  is the QR-decomposition of a regular matrix, then , then 
.

3.3.3.3 QR-Decomposition: Stability

It is important to note, that unitary/orthogonal transformations do not involve any 
amplification of relative errors in data vectors.

Theorem: Let  be the R-factor of the QR-decomposition of  computed 
by means of successive Householder reflections. Then there exists an orthogonal  
such that

e1

R

Ql l

A ∈ C ,  A =n,n QR :

Q ⋅n−1 Q ⋯Q A =n−2 1 R and Q := Q ⋯Q .1
T

n−1
T

k

a = [a , ...,a ] ∈1 n
T Rn γ cosϕ σ sinϕ ϕ

G (a ,a )a :1k 1 k = ⋅

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡ γ

⋮
−σ

⋮
0

⋯

⋱
⋯

⋯

σ

⋮
γ

⋮
0

⋯

⋯

⋱
⋯

0

⋮
0

⋮
1⎦⎥
⎥⎥⎥
⎥⎥⎥
⎤

=

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡a1
⋮
ak

⋮
an
⎦⎥
⎥⎥⎥
⎥⎥⎥
⎤

,

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡a1
⋮
0

⋮
an
⎦⎥
⎥⎥⎥
⎥⎥⎥
⎤

γ = ,  σ =
∣a ∣ + ∣a ∣1

2
k
2

a1

∣a ∣ + ∣a ∣1
2

k
2

ak

O(mn )2 m,n→∞

A = (a ) ∈ij i,j Km,n

(A) :bw = min{k ∈ N : j − i > k ⇒ a =ij 0} the upper bandwidth,
(A) :bw = min{k ∈ N : i − j > k ⇒ a =ij 0}the lower bandwidth.

bw(A) := (A) +bw (A) +bw 1 A

A = QR A ∈ Rn,n

bw(R) ≤ bw(A)

∈R
~ Rm,n A ∈ Rm,n

Q ∈ Rm,m

A+ΔA = Q  with ∣∣ΔA∣∣ ≤R
~

2 ∣∣A∣∣ ,
1 − cmn EPS

cmn EPS
2
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where  is the machine precision and  a small constant independent of .

3.3.3.4 QR-Decomposition in Eigen

#include <Eigen/QR> 
 
std::pair<MatrixXd, MatrixXd> qr_decomp_eco(const MatrixXd& A) { 
 Eigen::HouseholderQR<MatrixXd> qr(A); 
 MatrixXd Q = qr.householderQ(); 
 MatrixXd R = qr.matrixQR().template triangularView<Eigen::Upper>(); 
 return std::pair<MatrixXd, MatrixXd>(Q, R); 
}

3.3.4 QR-Based Solver for Linear Least Squares Problems
We consider the full-rank linear least squares problem: Given 

, seek  such that . We assume that we are given 
a QR-decomposition:  orthogonal,  regular upper triangular 
matrix.

We then apply the orthogonal 2-norm preserving transformation encoded in  to :

Eigen's built-in QR-based linear least squares solver

double lsqsolve_eigen(const MatrixXd& A, const VectorXd& b, VectorXd& x) { 
 x = A.householderQr().solve(b); 
 return ((A*x - b).norm()); 
}

Remark:

Computing generalized QR-decomposition  by means of Householder 
reflections or Givens rotations is numerically stable for any .

For any regular system matrix an LSE can be solved by means of "QR-decomposition + 
orthogonal transformation + backward substitution" in a stable manner.

Normal equations vs. orthogonal transformations methods

Use orthogonal transformation methods for least squares problems, whenever  
is dense and  is small.

Use normal equations in the expanded form, when  is sparse and  are big.

3.3.5 Modification Techniques for QR-Decomposition
3.5.5.1 Rank-1 Modifications

EPS c > 0 A

A ∈ R ,  m ≥m,n

n,  rank(A) = n x ∈ Rn ∣∣Ax− b∣∣ →2 min
A = QR,  Q ∈ Rm,m R ∈ Rm,n

Q Ax− b

∣∣AX − b∣∣ =2 ∣∣QRx− b∣∣ =2 ∣∣Q(Rx−Q b)∣∣ =T
2 ∣∣Rx− ∣∣ ,   :b

~
2 b
~ = Q b.T

A = QR

A ∈ Cm,n

A ∈ Rm,n

n

A ∈ Rm,n m,n
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For  we consider the rank-1 modification

Given a full QR-decomposition  orthogonal,  and 

 upper triangular, the goal is to find an efficient algorithm that yields a QR-
decomposition of  a product of orthogonal transformations, 

 upper triangular:

1. Compute 

2. Orthogonally transform , this can be done by applying  
ivens rotations from bottom to top.

3. Convert  into upper triangular form by  Givens rotations 
.

3.4 Singular Value Decomposition (SVD)

3.4.1 SVD: Definition and Theory

For any  there are unitary/orthogonal matrices  and a 
generalized diagonal matrix 

 such that

Definition: The decomposition  is called the singular value decomposition 
(SVD) of . The diagonal entries of  of  are the singular values of . The columns of 

 are the left/right singular vectors of .

Remark: As in the case of QR-decomposition we can also drop the bottom zero rows of  
and the corresponding columns of  in the case of . Thus we end up with an 
economical singular value decomposition, also called thin SVD in literature.

Lemma: The squares  of the non-zero singular values of  are the non-zero eigenvalues 
of  with associated eigenvectors  
respectively.

Lemma: If, for some  the singular values of  satisfy 
 then

 (the number of non-zero singular values)

A ∈ R ,  m ≥m,n n,  rank(A) = n,

A→ :A
~
= A+ uv ,  u ∈T R ,  v ∈m R .n

A = QR = ,  Q ∈[R00 ] Rm,m R ∈ Rm,n

R ∈0 Rn,n
=A
~ ,   ∈Q

~
R
~

Q
~ Rm,m ∈R

~

Rn,n

w = Q u ∈T Rm

w → ∣∣w∣∣e ,  e ∈1 1 Rm m− 1

R +1 ∣∣w∣∣ e v ∈2 1
T Rn,n n− 1

=A
~

A+ uv =T  with  =Q
~
R
~

Q
~

QQ G G ⋯G G1
T

12
T

23
T

n−1,n−2
T

n,n−1
T

A ∈ Km,n U ∈ K ,  V ∈m,m Kn,n

Σ = diag(σ , ...,σ ) ∈1 p R ,  p :m,n = min{m,n},  σ ≥1
σ ≥2 ⋯≥ σ ≥p 0

A = UΣV .H

A = UΣV H

A σi Σ A

U/V A

Σ
U m > n

σi
2 A

A A,  AAH H (V ) , ..., (V ) ,  (U) , ..., (U):,1 :,p :,1 :,p

1 ≤ r ≤ p := min{m,n}, A ∈ Km,n

σ ≥1 ⋯≥ σ >r σ =r+1 ⋯σ =p 0,

rank(A) = r
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3.4.2 SVD in Eigen
Computing SVDs in Eigen

#include <Eigen/SVD> 
 
std::tuple<MatrixXd, MatrixXd, MatrixXd> svd_full(const MatrixXd& A) { 
 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeFullU | Eigen::ComputeFullV); 
 MatrixXd U = svd.matrixU(); 
 MatrixXd V = svd.matrixV(); 
 VectorXd sv = svd.singularValues(); 
 MatrixXd Sigma = MatrixXd::Zero(A.rows(), A.cols()); 
 const unsigned p = sv.size(); 
 Sigma.block(0, 0, p, p) = sv.asDiagonal(); 
 return std::tuple<MatrixXd, MatrixXd, MatrixXd>(U, Sigma, V); 
}

It holds that

Eigen's algorithm for computing SVD is numerically stable

The asymptotic complexity for the economical SVD is 

Computing rank of matrix through SVD

MatrixXd::Index rank_by_svd(const MatrixXd &A, double tol = EPS) { 
 if(A.norm == 0) return MatrixXd::Index(0); 
 Eigen::JacobiSVD<MAtrixXd> svd(A); 
 const VectorXd sv = svd.singularValues(); 
 MatrixXd::Index n = sv.size(); 
 MatrixXd::Index r = 0; 
 while((r < n) && sv(r) >= sv(0)*tol) r++; 
 return r; 
}

Computation using rank() in Eigen

MatrixXd::Index rank_eigen(const MatrixXd& A, double tol = EPS) { 
 return A.jacobiSVD().setThreshold(tol).rank(); 
}

3.4.3 Solving General Least-Squares Problems by SVD
In this chapter we consider the most general setting

N (A) = Span{(V ) , ..., (V ) }:,r+1 :,n

R(A) = Span{(U) , ..., (U) }:,1 :,r

O(min{m,n} ⋅2 max{m,n})

Ax = b ∈ R  with A ∈m R ,  rank(A) =m,n r ≤ min{m,n}.
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We can use the invariance of the 2-norm of a vector with respect to multiplication with 
 together with the fact that  is unitary:

With this equation we arrive at the generalized solution

Computing generalized solution of  via SVD

#include <Eigen/SVD> 
 
VectorXd lsqsvd(const MatrixXd &A, const VectorXd &b) { 
 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeThinU | Eigen::ComputeThinV); 
 VectorXd sv = svd.singularValues(); 
 unsigned int r = svd.rank(); 
 MatrixXd U = svd.matrixU(), V = svd.matrixV(); 
  
 return V.leftCols(r) * (sv.head(r).cwiseinverse().asDiagonal() *  
     (U.leftCols(r).adjoint() * b)); 
}

Computation via solve() method

VectorXd lsqsvd_eigen(const MatrixXd &A, const VectorXd &b) { 
 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeThinU | Eigen::ComputeThinV); 
 return svd.solve(b); 
}

Theorem: If  has the SVD decomposition  then its Moore-Penrose 
pseudoinverse is given by .

3.4.4 SVD-Based Optimization and Approximation
3.4.4.1 Norm-Constrained Extrema of Quadratic Forms

We consider the following problem of finding the extrema of quadratic forms on the 
Euclidean unit sphere  :

This problem can be solved with SVD with the minimizer  from which 
we can obtain the minimal value .

Solving the minima problem with SVD in Eigen

U :
= [U  U ]1 2 U

∣∣Ax− b∣∣ =2 [U  U ] x−
∣
∣∣
∣
∣
∣∣
∣

1 2 [Σr

0
0
0

] [V1T
V2

T ] b =
∣
∣∣
∣
∣
∣∣
∣
2

−
∣
∣∣
∣
∣
∣∣
∣ [Σ V xr 1

T

0
] .[U b1

T

U b2
T ]

∣
∣∣
∣
∣
∣∣
∣
2

x =† V Σ U b,  ∣∣r∣∣ =1 r
−1

1
T

2 ∣∣U b∣∣ .2
T

2

Ax = b

A ∈ Km,n A = UΣV H

A =† V Σ U1 r
−1

1
H

{x ∈ K :n ∣∣x∣∣ =2 1}

given A ∈ K ,  m ≥m,n n,  find x ∈ K ,  ∣∣x∣∣ =n
2 1,   ∣∣Ax∣∣ →2 min.

x =∗ V e =n (V ):,n
∣∣Ax ∣∣ =∗

2 σn
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double minconst(VectorXd &x, const MatrixXd &A) { 
 MatrixXd::Index m = A.rows(), n = A.cols(); 
 if(m < n) throw std::runtimer_error("A must be tall matrix"); 
 Eigen::JacobiSVD<MatrixXd> svd(A, Eigen::ComputeThinV); 
 x.resize(n); x.setZero(); x(n-1) = 1.0; 
 x = svd.matrixV() * x; 
 return (svd.singularValues())(n-1); 
}

Lemma: If  has singular values , 
then its Euclidean matrix norm is given by . If  and  is 
regular/invertible, then its 2-norm condition number is .

3.4.4.2 Best Low-Rank Approximation

Thomas: TLDR for the best k-rank approximation you turn the sigma into  matrix (cut 
everything else away) then you take away the columns in U and V accordingly.

3.4.4.3 Principal Component Data Analysis (PCA)

whatever

3.6 Constrained Least Squares
We define linear least squares problems with linear constraints as follows:

Given:

Find  such that:

This problem can be solved via SVD the following way:

1. Compute an orthonormal basis of  using SVD

and the particular solution  of the constraint equation

This gives us a representation of the solution  of the form

A ∈ Km,n σ ≥1 σ ≥2 ⋯≥ σ ≥p 0,  p := min{m,n}
∣∣A∣∣ =2 σ (A)1 m = n A

cond (A) =2 σ /σ1 n

k × k

A ∈ R ,  m ≥m,n n,  rank(A) = n,  b ∈ Rm

C ∈ R ,  p <p,n n,  rank(C) = p,  d ∈ Rp

x ∈ Rn

∣∣Ax− b∣∣ →2 min,  and Cx = d.

N (C)

C = U [Σ 0] ,  U ∈[V1T
V2

T ] R ,  Σ ∈p,p R ,  V ∈p,p
1 R ,  V ∈n,p

2 Rn,n−p

⇒ N (C) = R(V )2

x ∈0 N (C) =T R(V )1

x :0 = V Σ U d.1
−1 T

x
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2. Insert this representation into the LSQ problem. This yields s standard linear least 
squares problem with coefficient matrix  and a right hand side vector 

:

4. Midterm Prep-Questions

4.1 HS 2019

4.1.1 Rank-1 Modifications

A rank-1 modification of  affects at most  entries of the matrix.

False - Choosing  and  will add  to every entry in 
.

If  is a rank-1 modification of , then 
.

True - The outer product of two vectors (i.e. ) always produces a rank-1 matrix. 
Furthermore it holds in general, that .

For every matrix  there is an invertible  arising from a rank-1 modification of 
.

False - A matrix  is only invertible if it has full rank. For any matrix  with 
 we therefore cannot reach a full rank by a rank-1 modification.

By rank-1 modification every matrix  can be converted into a singular (non-
invertible) matrix.

True - Take for example . Then the first column of  will vanish 
in , and this will result in  not being a full-rank matrix (and therefore also not 
invertible )

Let  be the matrix arising from  by replacing it's -th row  with , 
where  is a given vector. What rank-1 modification of  spawns . Give  and  
such that .

We can choose  and .

4.1.2 Computational cost of numerical linear algebra operations

double sumtrv1(const Eigen::MatrixXd &A, const Eigen::VectorXd &b) { 
 const int n = A.cols(); 

x = x +0 V y,  y ∈2 R .n−p

AV ∈2 Rm,n−p

b−Ax ∈0 Rm

∣∣A(x +0 V y) −2 b∣∣ →2 min ⟺ ∣∣AV y−2 (b−Ax )∣∣ →0 2 min.

A ∈ Rn,n 2n− 1

u = (1,  1, ..., 1)T v = (1,  1, ...,  1)T 1
A

A
~

A ∈ Rn,n rank(A) − 1 ≤ rank( ) ≤A
~

rank(A) + 1

uvT

rank(A+B) ≤ rank(A) + rank(B)

A ∈ Rn,n A
~

A

A A

rank(A) < n− 1

A ∈ Rn,n

u := (A) ,  v ::,1 = −e1 A

A
~

A
~

A
~

A ∈ Rm,n k (A)k,: wT

w ∈ Rn A A
~

u v

=A
~

A+ uvT

u = ek v = w − ((A) )k,:
T



NumCSE - Complete Ch. 13 27

 assert((A.rows() == n) && (b.size() == n)); 
  
 return b.transpose() *  
     A.triangularView<Eigen::Upper>().solve( 
     Eigen::MatrixXd::Identity(n,n)) * b; 
}

Asymptotic complexity for : 

 - We are solving  linear systems of equations with an  upper triangular 
system matrix. This amounts to  backward substitutions, each of which costs  
operations.

double sumtrv2(const Eigen::MatrixXd &A, const Eigen::VectorXd &b) { 
 const int n = A.cols(); 
 assert((A.rows() == n) && (b.size() == n)); 
 
 return b.transpose() * A.triangularView<Eigen::Upper>().solve(b); 
}

Asymptotic complexity for : 

 - We solve a single  upper triangular linear system of equations. Solving 
such a linear system of equations takes  operations. (The vector multiplications do 
not matter since they require  operations)

Eigen::VectorXd diagmodsolve1(Eigen::MatrixXd A, const Eigen::VectorXd &b) { 
 const int n = A.cols(); 
 assert((A.rows() == n) && (b.size() == n)); 
 Eigen::VectorXd x{Eigen::VectorXd::Zero(n)}; 
 double tmp = A(0, 0); 
 for(int i = 0; i < n; ++i) { 
  if(i > 0) { 
   A(i-1, i-1) = tmp; 
  } 
  tmp = A(i, i); 
  A(i, i) *= 2.0; 
  x += A.lu().solve(b); 
 } 
 return x; 
}

Asymptotic complexity for : 

 - We solve a  dense linear system of equations  times.

Eigen::VectorXd diagmodsolve2(const Eigen::MatrixXd &A, const Eigen::VectorXd &b) { 
 const int n = A.cols(); 
 assert ((A.rows() == n) && (b.size() == n)); 
 const auto Alu = A.lu(); 
 const auto z = Alu.solve(b); 

n→∞ O(n),  O(n ),  O(n ) or O(n ) ?2 3 4

O(n )3 n n× n

n O(n )2

n→∞ O(n),  O(n ),  O(n ) or O(n ) ?2 3 4

O(n )2 n× n

O(n )2

O(n)

n→∞ O(n),  O(n ),  O(n ) or O(n ) ?2 3 4

O(n )4 n× n n
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 const auto W = Alu.solve(Eigen::MatrixXd::Identity(n, n)); 
 const Eigen::VectorXd alpha = Eigen::VectorXd::Constant(n, 1.0) + 
                A.diagonal().cwiseProduct(W.diagonal()); 
 if((alpha.cwiseAbs().array() < 1E-12).any()) { 
  throw std::runtime_error("Tiny pivot!"); 
 } 
 return n * z - W * z.cwiseProduct(A.diagonal().cwiseQuotient(alpha)); 
}

Asymptotic complexity for : 

 - Due to the LU-decomposition of an  densely populated matrix in Line 4.

4.1.3 Cancellation

double f1(double x) { return std::log(std::sqrt(x * x + 1) - x); }

No cancellation or cancellation? If there is cancellation, give  and a 
cancellation-free implementation of the function.

Cancellation for . Use the equation  to prevent cancellation. 

Cancellation-free implementation:

double f1(double x) { 
 return (x > 0.0) ? -std::log((std::sqrt(x * x + 1) + x)) :  
           std::log((std::sqrt(x * x + 1) - x)); 
}

double f2(double x) { 
 assert(x > 0); 
 return std::log(x * x + 1) - 2 * std::log(x); 
}

No cancellation or cancellation? If there is cancellation, give  and a 
cancellation-free implementation of the function.

Cancellation for . Use the equation  to prevent 
cancellation. Cancellation-free implementation:

double f2(double x) { 
 assert(x > 0); 
 const double y = 1.0 / x; 
 return std::log(y * y + 1); 
}

double f3(double x) { 
 assert((x >= -1) && (x <= 1)); 

n→∞ O(n),  O(n ),  O(n ) or O(n ) ?2 3 4

O(n )3 n× n

x ≃ ???

x ≃ +∞ a− b =
a+b

a −b2 2

x ≃ ???

x ≃ +∞ log a− log b = log
b
a
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 return 1 - std::sqrt(1 - x * x); 
}

No cancellation or cancellation? If there is cancellation, give  and a 
cancellation-free implementation of the function.

Cancellation for .  Use  to prevent cancellation. Cancellation-free 

implementation:

double f3(double x) { 
 assert((x >= -1) && (x <= 1)); 
 const double s = x * x; 
 return s / (1 + std::sqrt(1 - s)); 
}

double f4(double x) { 
 const double s = std::cos(x); 
 return std::sqrt(1 - s * s); 
}

No cancellation or cancellation? If there is cancellation, give  and a 
cancellation-free implementation of the function.

Cancellation for . Use the trigonometric identity 
 to prevent cancellation. Cancellation-free implementation:

double f4(double x) { 
 return std::abs(std::sin(x)); 
}

4.2 HS 2018

4.2.1 Singular Value Decomposition
Let  be defined as

What are the non-zero singular values of ?

We first calculate  get the eigenvalues of :

x ≃ ???

x ≃ 0 a− b =
a+b

a −b2 2

x ≃ ???

x ≃⋯ ,−π,  0,π,  2π,  ⋯ cos x+2

sin x =2 1

A ∈ R3,2

A = ⎝⎜
⎛0
1
0

2
0
0⎠⎟
⎞

A

AAT A

A A =T (10 0
4)
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We then form the characteristic polynomial  with :

This polynomial has roots  and  and therefore the two singular values are given by:

Consider the full singular value decomposition  of . Determine 
 such that  and .

Per definition of the full singular value decomposition,  and . We 
therefore have:

Consider the reduced singular value decomposition  of . Determine 
 such that  and .

Since we only have 2 singular values, . From this it follows, that  and 
.

Let  be t he best rank-1 approximation of . Let  denote the Frobenius 
norm. What is the value ? unfinished

We first recall the definition of the Frobenius norm:

Furthermore, we recall that the best rank-1 approximation is defined as

4.2.2 Asymptotic Complexity
Consider the following Eigen/C++ code:

MatrixXd A = MatrixXd::Zero(n, n); 
 
A(0, 0) = 1.0; A(1, 0) = 1.0; 
for(int j = 1; j < n-1; ++j) { 
 for(int i = j-1; i < j + 2; ++i) { 
  A(i, j) = 1.0; 
 } 
} 
A(n-2, n-1) = 1.0; A(n-1, n-1) = 1.0; 
 
MatrixXd Q = A.householderQr().householderQ(); 
cout << Q; 
 
for(int i = 0; i < n*n; ++i) { 

A detA A− λIT

detA A−T λI = (1 − λ) ⋅ (4 − λ) − 0 ⋅ 0 = (1 − λ) ⋅ (4 − λ).

1 4

σ =1 =1 1 and σ =2 =4 2.

A = UΣV T A

a,  b,  α,  β ∈ N U ∈ Ra,b V ∈ Rα,β

U ∈ Km,m V ∈ Kn,n

U ∈ R  and V ∈3,3 R .2,2

A = U
~Σ~V~ T A

a,  b,  α,  β ∈ N ∈U
~ Ra,b ∈V

~ Rα,β

Σ ∈ R2,2 U ∈ R3,2
∈V

~ R2,2

∈A
~ R3,2 A ∣∣ ⋅ ∣∣F

∣∣A− ∣∣A
~

F

∣∣A∣∣ =F Σ Σ ∣a ∣i=1
m

j=1
n

ij 2
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 VectorXd b = VectorXd::Random(n); 
 VectorXd M = A.fullPivLu().solve(b); 
 cout << M; 
} 
 
FullPivLu<MatrixXd> lu = A.fullPivLu(); 
for(int i = 0; i < n*n; ++i) { 
 VectorXd b = VectorXd::Random(n); 
 VectorXd M = lu.solve(b); 
 cout << M; 
}

unfinished

4.2.3 Cancellation
Which side of the equations below should be preferred in order to minimize the impact of 
cancellation?

RHS or LHS?

RHS

RHS or LHS?

LHS

RHS or LHS?

LHS

RHS or LHS?

RHS

4.2.4 Householder reflections
The Householder matrix for a reflection about the hyper-plane with the normal vector  is 
defined as

x >> 1 :   =
x

(x+ 1) − x2 2

2 +
x

1

x >> 1 :   =
+ xx + 12

1
−x + 12 x

small x > 0 :   =
(1 + 2x)(1 + x)

2x2
−

1 + 2x
1

1 + x

1 − x

small x > 0 :  (1 − x) −2 1 = x −2 2x

v

T
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where  is a unit vector. Note that  is symmetric and orthogonal. We want to 

reduce a matrix  to an upper triangular form  using successive Householder 
transformations

where

Find the unit vector  such that the first element of  is negative and the second 
is positive.

The reflecting vector can be obtained by:

Now we have to make  into a unit vector by dividing it by it's length:

Find the unit vector  such that the second and third element of  are both 
positive.

The corresponding Householder matrix can be computed as:

Premultiplying  by  gives:

H :v = I −m 2 =
v vT

vvT

I ,mv~v~T

=v~ ∣∣v∣∣2
v Hv

A ∈ R3,3 R

H H A =v2 v1 R,

A = .⎣⎢
⎡−3
4
0

20
−20
3

1
−1
2 ⎦⎥
⎤

∈v~1 R3 v~1

v =1 a +1 sign(a ) ⋅1
1 ∣∣a ∣∣ ⋅1

2 e1

= −⎣⎢
⎡−3
4
0 ⎦⎥
⎤

5 ⋅ =⎣⎢
⎡1
0
0⎦⎥
⎤

.⎣⎢
⎡−8
4
0 ⎦⎥
⎤

v1

=v~1 ⋅
80
1

=⎣⎢
⎡−8
4
0 ⎦⎥
⎤

⋅
5
1

.⎣⎢
⎡−2
1
0 ⎦⎥
⎤

∈v~2 R3 v~2

H =v1 I −3 2
(v ) v1 T 1

v (v )1 1 T

= −⎣⎢
⎡1
0
0

0
1
0

0
0
1⎦⎥
⎤

2 =⎣⎢
⎡ 5

4

− 5
2

0

− 5
2

5
1

0

0
0
0⎦⎥
⎤

.⎣⎢
⎡− 5

3

5
4

0

5
4

5
3

0

0
0
1⎦⎥
⎤

A Hv1

7
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Now we can obtain  as follows:

To get the unit vector  we divide  by its length:

H A =v1 .⎣⎢
⎡5
0
0

−28
4
3

− 5
7

5
1

2 ⎦⎥
⎤

v2

v =2 +⎣⎢
⎡0
4
3⎦⎥
⎤

5 =⎣⎢
⎡0
1
0⎦⎥
⎤

.⎣⎢
⎡0
9
3⎦⎥
⎤

v~2 v2

=v~2 =
90

1

⎣⎢
⎡0
9
3⎦⎥
⎤

.
10

1

⎣⎢
⎡0
3
1⎦⎥
⎤
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