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Abstract

The accurate and efficient representation of multidimen-
sional continuous signals is essential in computer vision
and graphics. Coordinate-based Multi-Layer Perceptrons
(MLPs), or implicit neural representations (INRs), offer a
promising alternative to traditional grid-based methods by
encoding signals continuously and compactly. This project
explores the implicit biases of non-periodic activation func-
tions – Gaussian, Laplacian, and Quadratic – in the context
of 2D video approximation and sparse 3D reconstruction.
We conducted extensive experiments to evaluate these acti-
vation functions, focusing on their performance and gener-
alisation capabilities. Our findings reveal that non-periodic
activations can provide smoother interpolations and im-
proved robustness to sparse inputs compared to periodic
activations like SIREN. Additionally, we propose a geomet-
ric initialisation scheme for Gaussian activation that en-
hances its stability and convergence in 3D approximation
tasks. This work extends the understanding of activation
functions in coordinate MLPs and highlights their potential
for diverse signal representations.

1. Introduction

Goals. The accurate and efficient representation of mul-
tidimensional continuous signals is a crucial task in com-
puter vision and graphics, particularly for applications such
as 2D video approximation and sparse 3D reconstruction
[3]. Traditional grid-based methods for representing these
signals often suffer from limitations in resolution and mem-
ory efficiency. Coordinate-based MLPs, also known as
INRs, offer a promising alternative by encoding signals con-
tinuously and compactly [4]. However, the choice of ac-
tivation functions in these networks significantly impacts

their performance and generalisation capabilities. This
work aims to explore the implicit biases of non-periodic
activation functions, specifically Gaussian, Laplacian, and
Quadratic, in the context of 2D video approximation and
sparse 3D reconstruction.

Problems. Despite the advancements brought by pe-
riodic activations such as those proposed in [6], existing
methods still face challenges. Sinusoidal activations can ef-
fectively handle high-frequency components without posi-
tional embeddings, but their performance is highly sensitive
to initialisation schemes and often lacks robustness [4]. The
reliance on periodic activations limits the flexibility and ap-
plicability of these models to a broader range of signals, par-
ticularly those with non-periodic characteristics. Further-
more, traditional activations like ReLU in coordinate MLPs
fail to adequately capture high-frequency details, necessi-
tating the use of positional embeddings, which adds com-
plexity and computational overhead, as highlighted in [4].

Solution. Our proposed solution involves investigating
the performance and the implicit bias of non-periodic acti-
vation functions – Gaussian, Laplacian, and Quadratic – in
coordinate MLPs. By moving beyond the periodic activa-
tions, we aim to develop an understanding of models that
are more robust to sparse inputs and capable of capturing
a wider variety of signal characteristics. Non-periodic ac-
tivations can potentially offer smoother interpolations and
better generalisation properties, ensuring that nearby coor-
dinate points in the input space produce similar output be-
haviours.

Contributions. Our work makes the following contribu-
tions:

• Extensive Empirical Evaluation on 2D Video Ap-
proximation: We conducted a comprehensive set of
experiments to assess the performance of Gaussian,
Laplacian, and Quadratic activation functions in the
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context of 2D video approximation. This included
varying the percentages for the train/test split and eval-
uating the impact of ResFields.

• Experiments on Sparse 3D Reconstruction: Build-
ing on the insights from our 2D video approximation
experiments, we carried out a subset of experiments on
sparse 3D reconstruction. This allowed us to assess the
applicability of non-periodic activations in a different
but related domain, providing a broader perspective on
their performance.

• Improvement in 3D Approximation for Gaussian
Activation: We specifically enhanced the performance
of the Gaussian activation function in 3D approx-
imation tasks by deriving a geometric initialisation
scheme. This initialisation approach improved the sta-
bility and convergence of models using Gaussian acti-
vations, demonstrating the practical benefits of tailored
initialisation methods.

By conducting these experiments, and by developing an
initialisation method for the Gaussian activation, our work
extends the current understanding of activation functions in
coordinate MLPs.

2. Related Work

The field of INRs has seen significant advancements,
with various methods proposed to enhance the efficiency
and accuracy of representing multidimensional continuous
signals.

Periodic activation functions in INRs have been no-
tably advanced by [6], who introduced SIREN, a method
that uses sinusoidal activations to model high-frequency
details without positional embeddings. This approach has
proven effective for high-frequency components, but its
sensitivity to initialisation schemes can limit robustness and
applicability across diverse signal types. Similar to this ap-
proach, [5] proposed the Hyperbolic Oscillation (HOSC)
activation function, which is designed to better preserve
high-frequency details compared to traditional periodic ac-
tivations like SIREN. HOSC has been shown to outperform
both ReLU and SIREN in convergence speed and loss re-
duction in signal encoding tasks, making it a strong candi-
date for INRs involving detailed signal representations.

Non-periodic activation functions in INRs have also
been explored to address the limitations of periodic acti-
vations. [4] proposed a unifying framework for activations
in coordinate MLPs, advocating for the use of non-periodic
activation functions such as Gaussian and Laplacian. These
functions exhibit flexibility in encoding signals with vary-
ing local Lipschitz smoothness, broadening the range of ap-
plicable signals.

Architectural enhancements in INRs have further ad-
vanced the field. [3] introduce ResFields, which use resid-
ual connections within neural fields to improve the learn-
ing of spatiotemporal patterns. This approach demonstrates
enhanced performance in complex signal domains such as
video approximation and 3D reconstruction, emphasising
the importance of architectural modifications in comple-
menting activation function improvements to achieve state-
of-the-art results. Similarly, the HOIN framework proposed
by [1] addresses the spectral bias in INRs by introducing
high-order interaction blocks. These architectural enhance-
ments effectively capture high-frequency components while
mitigating spectral bias, showing significant improvements
in model performance when compared to traditional meth-
ods.

3. Method
Preliminary Knowledge. INRs use neural networks to

encode continuous multidimensional signals. A common
approach involves coordinate MLPs, where the input is a
coordinate (e.g., spatial coordinates for images) and the out-
put is the signal value at that coordinate (e.g., pixel inten-
sity). The performance of these MLPs is significantly influ-
enced by the choice of activation functions.

Activation Functions. We explore both periodic and
non-periodic activation functions in our experiments. The
activations used are as follows:

• Gaussian Activation: σ(x) = e
−0.5x2

a2

• Laplacian Activation: σ(x) = e
−|x|

a

• Quadratic Activation: σ(x) = 1
1+ax2

• ReLU (Rectified Linear Unit): σ(x) = max(0, x)

• SIREN (Sinusoidal Activation): σ(x) = sin(30x)

Model. The coordinate MLP can be described by the
following equations:

f(x) = WLσ(WL−1σ(...σ(W1x+b1)...+bL−1)+bL),
(1)

where x is the input coordinate, Wi and bi are the
weights and biases of the i-th layer, and σ is the activation
function.

Experimental Setup. We conducted extensive exper-
iments to evaluate the performance of different activation
functions in both 2D video approximation and sparse 3D
reconstruction.

For the 2D video approximation, we used two videos,
cat.mp4 and bikes.mp4. We experimented with five
different activation functions: Gaussian, Quadratic, Lapla-
cian, ReLU, and SIREN. For each activation function, we
tested configurations with 256 and 512 hidden features, and
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varied the percentage of data used for testing (90%, 50%,
30%, 10%). The rationale for varying the test data percent-
age is to assess model performance under different levels of
data sparsity, mimicking conditions of sparse reconstruction
where less training data is available. Each experiment was
conducted with and without ResField, resulting in a total of
80 experiments. We recorded the Loss, Train PSNR, and
Test PSNR at every 20,000 steps up to 100,000 steps. All
experiments were run on ETH’s Euler computer, equipped
with an RTX 3090 GPU, 6 cores, and either 4GB of RAM
per core for the 256 hidden feature cases or 6GB per core
for the 512 hidden feature cases.

For sparse 3D reconstruction, we evaluated the per-
formance of Gaussian, Laplacian, and Quadratic activa-
tion functions on both DyNeRF (Dynamic Neural Radiance
Fields) [2] and TNeRF (Temporal Neural Radiance Fields)
[2] networks. DyNeRF and TNeRF are networks designed
to model dynamic and temporal aspects of 3D scenes. We
conducted experiments with no ResField layers and with
ResField layers at i = 1, 2, 3. We evaluated the perfor-
mance using PSNR and SSIM metrics. Similar to the video
approximation experiments, these were conducted on the
Euler computer with an RTX 3090 GPU, 6 cores, and 6GB
of RAM per core.

ResFields Model. To address the capacity bottleneck
in modelling complex spatiotemporal signals, we introduce
residual field layers (ResFields [3]) within the MLP archi-
tecture. A ResField layer can be defined as:

ϕi(t,xi) = σi((Wi +Wi(t))xi + bi), (2)

where W is a time-dependent weight matrix that mod-
els the residuals of the network weights. This formulation
increases the model capacity via additional trainable param-
eters without modifying the overall network architecture.

The residual of network weights is defined as:

Wi(t) =

Ri∑
r=1

vi(t)[r] ·Mi[r], (3)

where the coefficients vi(t) ∈ RRi and the spanning set
Mi ∈ RRi×Ni×Mi are trainable parameters. This low-rank
factorisation reduces the total number of trainable parame-
ters, helping to prevent overfitting.

4. Experiments

4.1. Overview

Datasets. We utilised two datasets for our experiments:
one for 2D video approximation and another for sparse 3D
reconstruction. For the 2D video approximation tasks, we
used the following videos:

• Cat Video from [6]: A 512x512 pixel video, 12 sec-
onds long at 25 frames per second (fps), resulting in
300 frames.

• Bikes Video from [6]: A 640x272 pixel video, 10 sec-
onds long at 25 fps, resulting in 250 frames.

For the sparse 3D reconstruction tasks, we used the bas-
ketball and dancer sequences from the Owlii dataset [7].
Each sequence is captured at 30 fps over a 20-second pe-
riod. Depth maps were not used for training. These se-
quences provide complex, dynamic 3D scenes ideal for
evaluating the performance of our models.

Evaluation Metrics. To assess the performance of our
models, we used the following metrics:

• PSNR (Peak Signal-to-Noise Ratio): Defined as

PSNR = 10 log10

(MAX2

MSE

)
, (4)

where MAX is the maximum possible pixel value of
the image. Higher PSNR indicates better reconstruc-
tion quality.

• SSIM (Structural Similarity Index Measure): Mea-
sures the similarity between two images, considering
luminance, contrast, and structure. It is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,

(5)
where µx and µy are the means of x and y, σ2

x and
σ2
y are the variances, σxy is the covariance of x and y,

and C1 and C2 are constants to stabilise the division.
Higher SSIM values indicate better structural similar-
ity.

Baselines and Comparisons. For the 2D video approx-
imation task, we compared our proposed non-periodic ac-
tivation functions (Gaussian, Laplacian, Quadratic) against
traditional activation functions (ReLU) and periodic activa-
tion functions (SIREN). The results of the 3D sparse recon-
struction task were compared to the baselines established in
the ResFields paper [3].

4.2. Results and Discussion

4.2.1 2D Video Approximation

Results. We evaluated the performance of different activa-
tion functions on the cat.mp4 and bikes.mp4 videos
using two configurations: 256 and 512 hidden neurons, and
with test data percentages of 90% and 30%.

For the 256 neuron configuration with 90% test data
(Tab. 1), Gaussian and Quadratic activations achieved sim-
ilar Train and Test PSNR values, with Gaussian showing
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a minor drop (∆ = −0.43) and Quadratic (∆ = −0.41).
Laplacian had a slightly smaller drop (∆ = −0.33),
while ReLU showed the smallest difference (∆ = −0.13).
SIREN exhibited the highest Train PSNR (44.19) but a sig-
nificant drop in Test PSNR (∆ = −14.39), indicating over-
fitting. When using 30% test data (Tab. 2), all activations
performed better with smaller differences between Train
and Test PSNR values. ReLU again showed the smallest
drop (∆ = −0.02), and SIREN’s performance improved
but still had notable overfitting (∆ = −1.04).

For the 512 neuron configuration, Gaussian activation
had a Train PSNR of 32.88 and a Test PSNR of 30.85
(∆ = −2.04) with 90% test data (Tab. 1). Quadratic and
Laplacian had Train/Test PSNR differences of −0.68 and
−1.82, respectively. ReLU continued to perform stably
with a ∆ of −0.22, while SIREN had the highest Train
PSNR (52.04) but the largest drop (∆ = −22.21). With
30% test data (Tab. 2), Gaussian, Quadratic, and Laplacian
activations maintained small differences between Train and
Test PSNR values (∆ of −0.10, −0.07, and −0.16, respec-
tively). ReLU showed the smallest drop (∆ = −0.03), and
SIREN, although improved, still showed notable overfitting
(∆ = −2.10). Some example frames for the results of
the 512 neuron configuration are shown in Fig. 1 for the
cat.mp4 sequence, and in Fig. 2 for the bikes.mp4 se-
quence.

Discussion. The results indicate that non-periodic acti-
vation functions (Gaussian, Quadratic, Laplacian) generally
achieve consistent performance across different test data
percentages, with smaller differences between Train and
Test PSNR values. ReLU showed the smallest difference,
indicating good generalisation capability, while SIREN, de-
spite achieving high Train PSNR, consistently showed sig-
nificant drops in Test PSNR, highlighting issues with over-
fitting.

The data suggests that non-periodic activations may have
stronger implicit biases that allow them to generalise better
in sparse data conditions. This is particularly evident in the
smaller drops in PSNR values across different test scenar-
ios. These activations potentially offer smoother interpola-
tions and better robustness compared to periodic activations
like SIREN, which tend to overfit, especially with a higher
number of neurons and a lower percentage of training data.

4.2.2 Sparse 3D Reconstruction

3D Sparse Reconstruction. We evaluated the perfor-
mance of different activation functions on both DyNeRF
and TNeRF networks using two sequences from the Owlii
dataset, namely ”Basketball” and ”Dancer.” The results are
summarised in Tab. 3 and Tab. 4.

For the DyNeRF baseline without ResFields, the net-
work achieved an SSIM of 92.05 and a PSNR of 23.41 on

90% Test Data
σ(x) t ↓ Train PSNR Test PSNR ∆

25
6

N
eu

ro
ns Gaussian 1.6h 28.80 28.37 -0.43

Quadratic 1.6h 28.26 27.85 -0.41
Laplacian 1.5h 26.15 25.82 -0.33

ReLU 0.9h 23.96 23.84 -0.13
SIREN 1.0h 44.19 29.80 -14.39

51
2

N
eu

ro
ns Gaussian 4.0h 32.88 30.85 -2.04

Quadratic 3.9h 29.79 29.11 -0.68
Laplacian 3.9h 31.52 29.70 -1.82

ReLU 2.6h 25.32 25.09 -0.22
SIREN 2.9h 52.04 29.83 -22.21

Table 1. Mean PSNR values of different activation functions on
the cat.mp4 and bikes.mp4 video with ResField and 90% test
data.

30% Test Data
σ(x) t ↓ Train PSNR Test PSNR ∆

25
6

N
eu

ro
ns Gaussian 1.6h 29.04 28.98 -0.06

Quadratic 1.6h 28.09 28.04 -0.05
Laplacian 1.5h 27.20 27.13 -0.07

ReLU 0.9h 23.98 23.97 -0.02
SIREN 1.0h 39.49 38.45 -1.04

51
2

N
eu

ro
ns Gaussian 4.0h 30.41 30.31 -0.10

Quadratic 3.9h 29.18 29.11 -0.07
Laplacian 3.9h 30.26 30.11 -0.16

ReLU 2.6h 25.18 25.15 -0.03
SIREN 2.9h 43.75 41.65 -2.10

Table 2. Mean PSNR values of different activation functions on
the cat.mp4 and bikes.mp4 video with ResField and 30% test
data.

average. Adding ResFields improved performance to an
SSIM of 93.59 and a PSNR of 24.99. This improvement
was consistent across both sequences, indicating that Res-
Fields help capture more details in the reconstruction.

With Laplacian activation, the DyNeRF network
achieved an SSIM of 89.30 and a PSNR of 22.14 without
ResFields. Adding ResFields slightly improved the results
to an SSIM of 89.87 and a PSNR of 21.52 on average. Sim-
ilar patterns were observed for both sequences.

Gaussian and Quadratic activations did not learn effec-
tively with the current initialisation scheme, resulting in
poor performance with an SSIM of 86.51 and a PSNR of
12.39 for both. These results remained the same with and
without ResFields, suggesting that the network did not learn
anything meaningful.

For the TNeRF baseline without ResFields, the network
achieved an SSIM of 94.18 and a PSNR of 26.18 on aver-
age. Adding ResFields further improved performance to an
SSIM of 95.21 and a PSNR of 27.44. This trend was consis-
tent across both sequences, similar to the DyNeRF network.

Using Laplacian activation, the TNeRF network
achieved an SSIM of 89.31 and a PSNR of 22.15 without
ResFields. Adding ResFields resulted in a slight improve-
ment, with an SSIM of 89.88 and a PSNR of 21.52. The
patterns observed were consistent across both sequences.

Similar to the DyNeRF network, Gaussian and Quadratic
activations in the TNeRF network also failed to learn ef-
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Mean Basketball Dancer
Network t ↓ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑

DyNeRF 12h 92.05 23.41 92.56 23.49 91.54 23.33
+ ResFields (i=1, 2, 3) 93.59 24.99 93.49 24.77 93.69 25.22

DyNeRF Laplacian 18h 89.30 22.14 90.01 22.38 88.60 21.91
+ ResFields (i=1, 2, 3) 89.87 21.52 89.46 20.82 90.29 22.22

DyNeRF Gaussian 18h 86.51 12.39 86.01 12.09 87.01 12.69
+ ResFields (i=1, 2, 3) 86.51 12.39 86.01 12.09 87.01 12.69

DyNeRF Quadratic 21h 86.51 12.39 86.01 12.09 87.01 12.69
+ ResFields (i=1, 2, 3) 86.51 12.39 86.01 12.09 87.01 12.69

Table 3. Results for DyNeRF networks with different activation
functions. The table shows the SSIM and PSNR values for the
Basketball and Dancer sequences, as well as the mean of both.

Mean Basketball Dancer
Network t ↓ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑

TNeRF 12h 94.18 26.18 94.57 26.33 93.53 25.09
+ ResFields (i=1, 2, 3) 95.21 27.44 95.84 27.98 94.87 26.55

TNeRF Laplacian 17h 89.31 22.15 90.01 22.38 88.60 21.91
+ ResFields (i=1, 2, 3) 89.88 21.52 89.46 20.82 90.29 22.22

TNeRF Gaussian 18.5h 86.51 12.39 86.01 12.09 87.01 12.69
+ ResFields (i=1, 2, 3) 86.51 12.39 86.01 12.09 87.01 12.69

TNeRF Quadratic 20h 86.51 12.39 86.01 12.09 87.01 12.69
+ ResFields (i=1, 2, 3) 86.51 12.39 86.01 12.09 87.01 12.69

Table 4. Results for TNeRF networks with different activation
functions. The table shows the SSIM and PSNR values for the
Basketball and Dancer sequences, as well as the mean of both.

fectively with the current initialisation scheme, resulting in
poor performance with an SSIM of 86.51 and a PSNR of
12.39 for both. These results were unchanged with or with-
out ResFields.

Discussion. The results highlight the importance
of proper initialisation for different activation functions.
While the SIREN initialisation works well for periodic ac-
tivations, it appears inadequate for non-periodic ones like
Gaussian and Quadratic, leading to poor learning outcomes.
This indicates a bias in the initialisation scheme, which
needs to be tailored to the specific activation function to en-
sure effective learning. The Laplacian activation, although
better than Gaussian and Quadratic, still underperformed
compared to the baseline, further emphasising the need for
suitable initialisation strategies for non-periodic activations.

Insights from the 2D video approximation task suggest
that non-periodic activations have potential for better gen-
eralisation under data sparsity conditions. However, this po-
tential did not fully transfer to the 3D reconstruction task.
The poor performance of Gaussian and Quadratic activa-
tions in the 3D task highlights the necessity of appropriate
initialisation, as the same activations performed adequately
in the 2D task.

4.3. Geometric Initialisation

Introduction. In the context of INRs, the initialisation
of network parameters significantly influences the ability of
the network to learn complex signals. Standard initialisation

(a) Gaussian (b) Quadratic

(c) Laplacian (d) ReLU

(e) SIREN

Figure 1. Frames from the 2D video approximation tasks using the
cat.mp4 video, with 512 hidden features, ResFields, and 90%
test data.

techniques, such as those used for periodic activations like
in SIREN networks, might not be suitable for non-periodic
activations like Gaussian functions. This mismatch can lead
to suboptimal performance, as observed in our experiments
with Gaussian and Quadratic activations. To address this is-
sue, we derived a tailored geometric initialisation for the
Gaussian activation function, ensuring the network starts
with parameters that allow for effective learning.

Derivation of the Geometric Initialisation for Gaus-
sian Activation. The Gaussian function used in our experi-
ments is defined as

g(x) = e−
0.5x2

a2

with a = 1. For an n-dimensional vector z where each
entry is 1

n , and an n×m matrix W with i.i.d. entries W ∼
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(a) Gaussian

(b) Quadratic

(c) Laplacian

(d) ReLU

(e) SIREN

Figure 2. Frames from the 2D video approximation tasks using
the bikes.mp4 video, with 512 hidden features, ResFields, and
90% test data.

N (0, 1), we aim to compute the expectation of

f(x) = z⊤
n∑

i=1

g(wix),

where wi are the rows of W . First, we simplify the expres-
sion:

f(x) =
1

n

n∑
i=1

g(wix).

Given that wix ∼ N (0, ∥x∥2), we can use the result for a
normally distributed variable Y ∼ N (0, σ2), which states:

E
[
e−

Y 2

2

]
=

(
1 +

σ2

2

)−1/2

.

Substituting σ2 = ∥x∥2, we obtain:

E
[
e−0.5∥x∥2

]
=

(
1 + ∥x∥2

)−1/2
.

Thus, the expectation for the Gaussian activation is:

E[f(x)] =
(
1 + ∥x∥2

)−1/2
.

More generally, this can be expressed as:
1√

1 + a2∥x∥2

2

.

This derivation provides a geometric initialisation
specifically tailored for Gaussian activations, ensuring the
network parameters are initialised in a manner that provides
effective learning.

3D Sparse Reconstruction with Gaussian Initialisa-
tion. To evaluate the effectiveness of the new initialisation,
we conducted additional experiments using the TNeRF net-
work on the ”Basketball” and ”Dancer” sequences. The
results, summarised in Tab. 5, demonstrate significant im-
provements compared to the standard initialisation.

Before the geometric initialisation, the TNeRF network
with Gaussian activation failed to learn effectively, yield-
ing poor performance with an average SSIM of 86.51 and
PSNR of 12.39 for both sequences (see Tab. 4).

After applying the geometric initialisation specifically
derived for Gaussian activations, the performance improved
substantially. The TNeRF network with the new initialisa-
tion achieved an average SSIM of 91.27 and a PSNR of
23.08, indicating a more effective learning process and bet-
ter reconstruction quality.

Comparatively, the Gaussian initialisation performed
better than the Laplacian activation, which achieved an av-
erage SSIM of 89.31 and a PSNR of 22.15 (see Tab. 5). The
baseline TNeRF without ResFields showed the best results
with an SSIM of 94.18 and a PSNR of 26.18. Although the
Gaussian initialisation did not outperform the baseline, it
significantly closed the gap, indicating its potential for im-
proving non-periodic activations in 3D reconstruction tasks.
Visual results of these experiments can be seen in Fig. 3.
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Mean Basketball Dancer
Network t ↓ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑

TNeRF 12h 94.18 26.18 94.57 26.33 93.53 25.09
TNeRF Laplacian 17h 89.31 22.15 90.01 22.38 88.60 21.91
TNeRF Gaussian Init. 19h 91.27 23.08 91.15 23.01 91.39 23.16

Table 5. Results for TNeRF networks with different activation
functions after applying geometric Gaussian initialisation. The
table shows the SSIM and PSNR values for the Basketball and
Dancer sequences, as well as the mean of both.

5. Conclusion
In this work, we have investigated the implicit bi-

ases of non-periodic activation functions—Gaussian, Lapla-
cian, and Quadratic—within coordinate-based MLPs for 2D
video approximation and sparse 3D reconstruction. Our
contributions include:

• Comprehensive empirical evaluation of Gaussian,
Laplacian, and Quadratic activations in 2D video ap-
proximation, demonstrating their potential for better
generalisation and smoother interpolations compared
to periodic activations.

• Evaluation of these non-periodic activations in sparse
3D reconstruction tasks, providing insights into their
applicability across different signal domains.

• Development of a geometric initialisation scheme for
Gaussian activation, which significantly improves its
stability and convergence in 3D approximation tasks.

While our results indicate that non-periodic activation
functions can offer robust performance and better gener-
alisation in certain scenarios, there are limitations to our
approach. The initialisation schemes for Gaussian and
Quadratic activations need further refinement to enhance
their effectiveness across all tasks. Additionally, the cur-
rent evaluation is limited to specific datasets and network
configurations, which may not generalise to all possible use
cases.

Future work could explore the development of tailored
initialisation methods for other non-periodic activations and
extend the evaluation to a broader range of datasets and
network architectures. Furthermore, integrating architec-
tural enhancements such as residual connections with non-
periodic activations could provide additional performance
improvements. These directions hold promise for advanc-
ing the capabilities of implicit neural representations in di-
verse applications.
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(a) Gaussian activation with geometric initialisation on the ”Dancer” sequence

(b) Laplacian activation on the ”Dancer” sequence

(c) Gaussian activation with geometric initialisation on the ”Basketball” sequence

(d) Laplacian activation on the ”Basketball” sequence

Figure 3. Frames from the 3D sparse reconstruction tasks using the TNeRF network without ResFields. The Gaussian activations were
trained with our derived geometric initialisation.
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