
RainFM: A Stratified Hybrid Model for Enhanced Predictive Accuracy in
Recommender Systems

Rainer Feichtinger, Rongxing Liu, Justin Lo, Ruben Schenk
Group: Recommenders

Department of Computer Science, ETH Zurich, Switzerland

Abstract—This work presents an innovative approach,
RainFM, to enhance prediction accuracy in a specific recom-
mender system dataset given by the Computational Intelligence
Lab 2023 at ETH Zurich. RainFM combines strengths from
a range of established models, making use of traditional and
advanced methodologies, to create a refined interpretation of
the underlying data. Notably, it adopts a stratified approach,
dividing the dataset into distinct statistical groups and treating
these groups individually.

In comparison against several widely-used models such
as matrix factorization through Singular Value Decomposi-
tion, generalized matrix factorization, Multi-Layer Percep-
tron, NeuFM, and Bayesian Factorization Machines, RainFM
consistently outperformed all, showcasing superior predictive
accuracy. However, the method is associated with certain
challenges, including computational cost and careful hyper-
parameter tuning.

I. INTRODUCTION

Recommender systems have long become a significant
component of many digital platforms, effectively tailoring
user experiences across various sectors. The strength of these
systems lies in their ability to accurately predict the prefer-
ences of users, a task often achieved through Collaborative
Filtering (CF). Our work focuses on comparing, innovating,
and improving existing CF strategies, particularly for user
ratings on items based on a 1-5 star scale. In other words,
we are concerned with the explicit feedback case, meaning
that users directly rate items. This problem has famously
been subject to the Netflix Prize competition [1].

Using a dataset of ratings from 10’000 users across 1’000
items, we aim to refine the prediction accuracy of these
systems. Our initial model, based on the straightforward
and well-researched Singular Value Decomposition (SVD)
and the Alternating Least Squares (ALS) technique served
as a benchmark. Recognizing the need for a more nuanced
approach, we expanded our toolkit to include Factorization
Machines (FM) [2], specifically Bayesian Factorization Ma-
chines (BFM) [3] and Neural Collaborative Filtering systems
[4]. We developed our final model based on the strengths and
weaknesses of those different models.

II. MODELS AND METHODS

Matrix Factorization (MF) techniques are the founda-
tion of many CF approaches to solve matrix completion

problems. These techniques take a high-dimensional dataset
and factorize it into a product of low-dimensional matrices,
thereby reducing the dimensionality of the data.

Consider we are given a sparse matrix A ∈ Rm×n with
m = 10′000 and n = 1′000, where entry (A)ij denotes
the rating user i gave item j. The aim of MF techniques is
to find a factorization of A. We know that for each matrix
there exists the SVD; in other words, there exists orthogonal
matrices U ∈ Rn×n and V ∈ Rm×m such that A can be
expressed as

A = UΣV⊤, Σ = diag(σ1, σ2, ..., σmin{m,n}),

σi ≥ σi+1 (∀i).
(1)

In the context of CF, the two low-rank matrices U and V
represent the latent factors of users and items, respectively.
Here, row (A)i,: corresponds to a latent factor representation
of user i, and similarly, the column (V):,j to a latent factor
representation of item j. The singular values in matrix Σ
determine the significance of each basis vector, which in turn
means that by keeping only the top k singular values and
setting the remaining ones to 0, we can get a k-dimensional
approximation of our data.

A. Baseline

While SVD can give a good approximation of the data,
it is prone to overfitting when subjected to noise. In our
baseline approach we therefore make use of the iterative
shrinkage SVD algorithm [5]. In this approach, we shrink the
singular values by some amount in each iteration, clipping
them at zero if they become negative. The code for the
iterative shrinkage SVD algorithm is presented in Algorithm
1.

The resulting matrix Aτ of Algorithm 1 is a low-rank,
noise-reduced approximation of our initial matrix A, re-
constructing the missing data entries through SVD matrix
factorization. The parameters we use for our dataset are
τ = 50, n = 20, and η = 0.2. This provides a good
initial approximation, which we further improve through
Alternating Least Squares (ALS).

ALS is another matrix factorization technique which alter-
nately fixes one factor matrix, either U or V, and optimizes
the other. We define the approximation error for which we

Algorithm 1 Iterative Shrinkage SVD
Input: A, τ , n, η

1: X← 0
2: for i← 1 to n do
3: U, s,V⊤ ← SVD(X) ▷ Perform SVD on X
4: s← max(s− τ, 0) ▷ Shrink singular values
5: Aτ ← U · s ·V⊤ ▷ Reconstruction
6: Adiff ← ΠΩ(A−Aτ) ▷ Get masked difference
7: X← X+ η ·Adiff ▷ Update X
8: end for
9: return Aτ

optimize the factor matrices as

l(U, V) =
1

2
||ΠΩ(A−UV)||2F +λ(||U||2F + ||V||2F), (2)

with λ > 0. Given this objective, we can define the ALS
algorithm as

Vt+1 ← argmin
V

l(Ut, V),

Ut+1 ← argmin
U

l(U, Vt+1).
(3)

The implementation of ALS is shown in Algorithm 2. The
resulting matrix A = UV⊤ provides one of our baselines
for our CF problem. Through experimenting we found the
parameters n = 10 and λ = 0.15 to be providing the best
results for our specific dataset.

Algorithm 2 Alternating Least Squares
Input: A, λ, n
U, s,V← SVD(A)

1: for t← 1 to n do
2: for rows ui of U do
3: u∗

i ← (
∑

j ωijvjvTj + 2λI)−1(
∑

j ωijaijvj)
4: end for
5: for columns vj of V do
6: v∗j ← (

∑
i ωijuiuT

i + 2λI)−1(
∑

i ωijaijui)
7: end for
8: end for
9: return A← UVT

B. Neural Collaborative Filtering

Given the significant influence that deep neural networks
have in a variety of computational disciplines, we decided
to explore this approach as a comparative measure against
our existing methodologies. The main focus lies on the three
methods presented in [4]. Let us consider a factorization of
A = UV⊤ where U ∈ Rn×k and V ∈ Rm×k, symbolizing
the latent factor matrices for users and items, in that order.
Additionally, we denote vU

i and vI
j as the feature vectors

that characterize user i and item j, respectively.

1) Generalized Matrix Factorization: The first strategy,
known as Generalized Matrix Factorization (GMF), lever-
ages the proven MF method, elaborated on in Section II-A.
Within this approach, the input layers constitute to one-hot
encoded representations of user i and item j. The resulting
embedding vector then serves as the latent representation for
the corresponding user or item.

We can define the latent vector for user pi as U⊤vU
i and

for item qj as V⊤vI
j . Based on this, the mapping function

for the first neural CF layer can be expressed as

ϕ1(pi, qj) = pi ⊙ qj , (4)

where ⊙ denotes the element-wise multiplication of vectors.
Subsequently, we can project the resultant vector onto the

output layer as follows:

ŷij = aout(h
⊤(pi ⊙ qj)), (5)

where aout signifies the activation function and h represents
the weights of the output layer edges.

2) Multi-Layer Perceptron: With a dual-pathway model
at our disposal, a straightforward approach would involve
concatenating the feature vectors derived from both path-
ways. However, this overlooks the potential interactions
between the latent characteristics of users and items, a
critical aspect for capturing the CF effect. To address this,
a Multi-Layer Perceptron (MLP) is utilized, facilitating the
capture of interactions between user and item latent features,
as suggested by [4]. The MLP model can be defined as
follows:

z1 = ϕ1(pi, qj) =

[
pi

qj

]
,

ϕ2(z1) = a2(W
⊤
2 z1 + b2),

· · ·
ϕL(zL−1) = aL(W

⊤
LzL−1 + bL),

ŷij = σ(h⊤ϕL(zL−1)).

(6)

Here, Wx, bx, and ax represent the weight matrix, bias
vector, and activation function of the x-th layer’s perceptron,
respectively. By introducing hidden layers on top of the
concatenated vector, the model gains enhanced flexibility
and non-linearity, empowering it to learn the interactions
between pi and qj .

3) GMF and MLP Blend: Our third method within the
neural network approach involves the NeuFM model as
proposed by [4]. This model effectively blends the strengths
of both the linear kernel model (GMF) and the non-linear
kernel model (MLP). The NeuFM model can be expressed
as:

ŷij = σ(h⊤a(pi ⊙ qj +W

[
pi

qj

]
+ b)) (7)

This design accommodates datasets where optimal embed-
dings have varying sizes by allowing the model to learn sep-
arate embeddings, enhancing its flexibility. The formulation

we used for our comparisons is:

ϕGMF = pG
i ⊙ qG

j ,

ϕMLP = aL(W
⊤
Lψ + bL),

(8)

where

ψ = aL−1(· · · a2(W⊤
2

[
pM
i

qM
j

]
+ b2) · · ·), (9)

and
ŷij = σ(h⊤

[
ϕGMF

ϕMLP

]
). (10)

To improve the performance of the NeuFM blend, we per-
formed pretraining by first separately training on the GMF
and MLP models. These weights were then saved and loaded
into the NeuFM architecture, where the model was further
trained using Stochastic Gradient Descent. This served to
stabilise training and improve the eventual performance of
the NeuFM model.

C. (Bayesian) Factorization Machines
Factorization Machines (FM) [2] are an advancement of

linear regression and MF models. Rather than applying
traditional MF methods that leverage a user-item interaction
matrix as input, FMs utilize tuples of real-valued feature
vectors and numeric target variables to model user-item in-
teractions. An n-way FM is employed to model interactions
of n variables for a target y using p explanatory variables
x ∈ Rp. Specifically, the n-way FM is formulated as:

y(x) = w0+

p∑
j=1

wjxj +

N∑
n=2

p∑
j1=1

· · ·
p∑

jn>jn−1

wj1,···jd

n∏
l=1

xjl

(11)
Here, V ∈ Rd×k denotes the feature embeddings and k
represents the dimensionality of latent factors.

In practical applications, a 2-way FM is most commonly
used, defined as:

y(x) = w0 +

p∑
j=1

wjxj +

p∑
i=1

p∑
j=i+1

⟨vi, vj⟩xixj (12)

This model is effective for handling large dimensional
sparse inputs, thanks to an efficient optimization method
associated with FMs that reduces the computational time
from polynomial to linear.

Bayesian FM (BFM) is a further development of FM
which integrates Bayesian inference. The Bayesian theory
recommends incorporating hierarchical hyperpriors for reg-
ulating the model parameters. In a typical FM model, the
standard hyperparameters µ, λ, α are augmented by hyper-
priors Θ0 = {α0, β0, µ0, γ0, αλ, βλ}.

To sample from the posterior, we use Gibbs sampling,
leveraging the multilinear nature of FM. This approach
defines the relationship between the target and explanatory
variables as:

y(x|Θ) = gθ(x) + θhθ(x) ∀θ ∈ Θ (13)

BFM, given its Bayesian approach, further generates condi-
tional posterior distributions for each parameter and hyper-
parameter. While we omit the specific mathematical expres-
sions for these distributions for brevity, it’s essential to un-
derstand that these distributions allow the model parameters
to adjust more effectively based on the data. This mechanism
enhances the model’s flexibility, thus improving its ability to
capture complex data patterns while preventing overfitting.
Finally, the algorithm works by iteratively drawing samples
for hyperparameters and model parameters.

D. Adaptation of Baseline Approaches

Due to the promising baseline score of the BFMs, we
initially explored methods that could improve on its perfor-
mance. One benefit of the BFMs is its ability to produce
probabilistic outputs. Consequently, we experimented with
using the BFM outputs as a pretraining for other methods.
As an initial experiment, we utilized the BFM model to
predict the output of all user-item pairs. We then augmented
our original training data with a subset of these predictions
and used the augmented dataset to perform various methods
such as the SVD or K-Nearest-Neighbours (KNN) models.
Although this did not directly improve the results, it inspired
further experiments into how we could combine methods
together.

An effective strategy involved applying a KNN model
with k = 30 clusters to the initial training dataset. This
model allowed us to assign each datapoint to a cluster and
obtain a corresponding weighted rating for the datapoint.
The KNN pretraining was followed by augmenting the origi-
nal training dataset by evenly sampling datapoints from each
cluster, thus expanding the training dataset. This enriched
dataset was then used to train a BFM model, where we
noted an improvement in the Mean Absolute Error (MAE)
over the baseline BFM model.

E. Our Method (RainFM)

Observing the possible success in combining models, our
proposed RainFM approach leverages gradient boosting and
a variety of baseline models to create a combination of
linear models for heightened prediction accuracy. We found,
empirically, that linear models delivered superior outcomes
for our specific dataset.

Given the enormity of potential model combinations –
equating to 2|Models| – we had to exclude the exhaustive
testing of all possible combinations due to computational
constraints. Instead, we applied a forward selection approach
based on the models detailed in Table I. In each step, we
incorporated the model that provided the most substantial
reduction in test Root Mean Squared Error (RMSE), contin-
uing this process until no further improvements were noted.

We also adopted a stratified approach by partitioning the
dataset into distinct subsets. This strategy stemmed from
the observation that certain models might demonstrate better

performance within specific data groups than over the entire
dataset. We experimented with a variety of grouping strate-
gies, exploring different group numbers and characteristics
such as the number of ratings a movie received, average user
ratings, and average movie ratings. The optimal outcome
was achieved by grouping based on the number of user
ratings and utilizing quantiles to define these groups. Within
each group, forward selection was used to identify the most
effective models. These were then linearly combined to
create a group-specific model.

Our final RainFM model is a linear amalgamation of the
group-specific models and the model based on the entire
dataset, achieving an improved balance between specificity
and generalization.

III. RESULTS

We performed extensive evaluations on our dataset, sep-
arating it into a training and validation set using an 80/20
split. The resulting performance metrics, specifically RMSE
and MAE, allowed us to compare and contrast the efficiency
of the various models tested. Table I encapsulates these
results.

Method RMSE MAE
Item average 1.0309 0.8398
SVD & ALS 0.9921 0.7896
Generalized MF 1.0822 0.8795
Multi-Layer Perceptron 1.0029 0.8105
NeuFM (Pretrained) 1.0041 0.8092
BFM Baseline 0.9777 0.7809
BFM (augmented with KNN) 0.9840 0.7808
RainFM 0.9695 0.7714

Table I
RESULTS OF THE DIFFERENT METHODS ON OUR SPECIFIC DATASET.

BOLD ENTRIES MARK THE BEST PERFORMING METHOD.

IV. DISCUSSION

Our RainFM approach demonstrates substantial improve-
ments in predictive accuracy, as confirmed by superior
RMSE and MAE scores in Table I. This approach, specif-
ically developed with our dataset in mind, leverages the
strengths of various models, enabling a nuanced understand-
ing of the data. One of the key attributes of RainFM is the
use of partitioning, which caters to the multifaceted nature
of user behavior. By breaking down the dataset into distinct
statistical groups, we manage to make the recommendations
more personalized and more effective.

However, the strengths of RainFM come with certain
complexities. The combination of models and the tuning
of multiple hyperparameters can increase computational de-
mands. Additionally, identifying the optimal characteristics
for data partitioning could be challenging in certain cases.
Yet, its application can lead to significant enhancements in
recommendation systems.

V. SUMMARY

This work introduced RainFM, an innovative approach
tailored to our specific dataset, with the aim to enhance pre-
diction accuracy in recommendation systems. Our approach
merges strengths from various models, making use of both
traditional techniques and advanced models. In addition, we
have employed a stratified approach to the data, treating
different groups differently, based on statistical measures
such as the number of ratings per user.

Our evaluations showed that RainFM outperforms sev-
eral well-established models, underscoring its effectiveness.
However, the complexity of the model does present certain
challenges, such as computational cost and the need for
meticulous tuning of hyperparameters.

ACKNOWLEDGEMENTS

The authors thank André Minder for his careful reading
and helpful suggestions.

REFERENCES

[1] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings
of the KDD Cup Workshop 2007. ACM, 2007, pp. 3–6.

[2] S. Rendle, “Factorization machines,” in 2010 IEEE Interna-
tional conference on data mining. IEEE, 2010, pp. 995–1000.

[3] ——, “Bayesian factorization machines,” in Proceedings of
the NIPS Workshop on Sparse Representation and Low-rank
Approximation, 2011.

[4] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua,
“Neural collaborative filtering,” 2017.

[5] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value
thresholding algorithm for matrix completion,” SIAM Journal
on Optimization, vol. 20, no. 4, pp. 1956–1982, Jan. 2010.

